Recent advances in co-processing biomass feedstock with petroleum feedstock: A review
Cong Wang, Tan Li, Wenhao Xu, Shurong Wang, Kaige Wang
Recent advances in co-processing biomass feedstock with petroleum feedstock: A review
Co-processing of biomass feedstock with petroleum feedstock in existing refineries is a promising technology that enables the production of low-carbon fuels, reduces dependence on petroleum feedstock, and utilizes the existing infrastructure in refinery. Much effort has been dedicated to advancing co-processing technologies. Though significant progress has been made, the development of co-processing is still hindered by numerous challenges. Therefore, it is important to systematically summarize up-to-date research activities on co-processing process for the further development of co-processing technologies. This paper provides a review of the latest research activities on co-processing biomass feedstock with petroleum feedstock utilizing fluid catalytic cracking (FCC) or hydrotreating (HDT) processes. In addition, it extensively discusses the influence of different types and diverse physicochemical properties of biomass feedstock on the processing of petroleum feedstock, catalysts employed in co-processing studies, and relevant projects. Moreover, it summarizes and discusses co-processing projects in pilot or larger scale. Furthermore, it briefly prospects the research trend of co-processing in the end.
co-processing / biomass / bio-oil / petroleum feedstock / fluid catalytic cracking / hydrotreating
[1] |
Sousa-AguiarE FXimenesV LAlmeidaJ M A R D,
|
[2] |
Guilhot L. An analysis of China’s energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system. Energy Policy, 2022, 162: 112806
CrossRef
Google scholar
|
[3] |
Olabi A, Abdelkareem M A. Renewable energy and climate change. Renewable & Sustainable Energy Reviews, 2022, 158: 112111
CrossRef
Google scholar
|
[4] |
Liu Y, Yang X, Zhang J.
CrossRef
Google scholar
|
[5] |
van Dyk S, Su J, Mcmillan J D.
CrossRef
Google scholar
|
[6] |
Jeswani H K, Chilvers A, Azapagic A. Environmental sustainability of biofuels: A review. Proceedings of the Royal Society of London. Series A, 2020, 476(2243): 20200351
CrossRef
Google scholar
|
[7] |
WoodwardS. Biofuels: A Solution for Climate Change. National Renewable Energy Laboratory, Golden, CO, US, 1999
|
[8] |
Paratzos S, Mcmillan J D, Saddler J N. The Potential and Challenges of Drop-in Biofuels. IEA Bioenergy Task 39 Report, 2014
|
[9] |
Yazdanparast R, Jolai F, Pishvaee M.
CrossRef
Google scholar
|
[10] |
van Dyk S, Su J, McMillan J D, et al. Drop-in Biofuels: The Key Role that Co-processing Will Play in Its Production. IEA Bioenergy Task 39 Report, 2019
|
[11] |
Moon M, Park W K, Lee S Y.
CrossRef
Google scholar
|
[12] |
DasP. Pyrolytic bio-oil—Production and applications. In: Tuli D, Kasture S, Kuila A, eds. Advanced Biofuel Technologies. Elsevier, 2022, 243–304
|
[13] |
Bezergianni S, Dimitriadis A, Kikhtyanin O.
CrossRef
Google scholar
|
[14] |
Bhatt A H, Zhang Y, Heath G. Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards. Applied Energy, 2020, 268: 114937
CrossRef
Google scholar
|
[15] |
Shahriar M F, Khanal A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel, 2022, 325: 124905
CrossRef
Google scholar
|
[16] |
TalmadgeMJiangY JAskanderJ,
|
[17] |
Han X, Wang H, Zeng Y.
CrossRef
Google scholar
|
[18] |
Andrade M C, Gorgulho Silva C D O, De Souza Moreira L R.
CrossRef
Google scholar
|
[19] |
Karatzos S, Van Dyk J S, Mcmillan J D.
CrossRef
Google scholar
|
[20] |
van Dyk S, Su J, Ebadian M.
CrossRef
Google scholar
|
[21] |
Saravanan A, Senthil Kumar P S, Jeevanantham S.
CrossRef
Google scholar
|
[22] |
Rodionova M V, Bozieva A M, Zharmukhamedov S K.
CrossRef
Google scholar
|
[23] |
Jena U, Das K. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy & Fuels, 2011, 25(11): 5472–5482
CrossRef
Google scholar
|
[24] |
Seo M W, Lee S H, Nam H.
CrossRef
Google scholar
|
[25] |
StöckerM. Perspectives for thermochemical conversions of lignocellulosic biomass. Small, 2023, early access, doi:10.1002/smll.202302495
|
[26] |
ChenGZhangRMaW,
|
[27] |
Liao H T, Ye X N, Lu Q.
CrossRef
Google scholar
|
[28] |
Lahijani P, Mohammadi M, Mohamed A R.
CrossRef
Google scholar
|
[29] |
Zhang M, Hu Y, Wang H.
CrossRef
Google scholar
|
[30] |
Stefanidis S D, Kalogiannis K G, Lappas A A. Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking. Wiley Interdisciplinary Reviews. Energy and Environment, 2018, 7(3): e281
CrossRef
Google scholar
|
[31] |
SpeightJ G. Handbook of Petroleum Refining. Boca Raton: CRC Press, 2016
|
[32] |
Zhang R, You Z, Ji J.
CrossRef
Google scholar
|
[33] |
Jacobson K, Maheria K C, Kumar Dalai A K. Bio-oil valorization: A review. Renewable & Sustainable Energy Reviews, 2013, 23: 91–106
CrossRef
Google scholar
|
[34] |
Liu D, Li Z, Wu C.
CrossRef
Google scholar
|
[35] |
Wu N, Niu Q, Pieters J.
CrossRef
Google scholar
|
[36] |
Kumar S, Chandra Srivastava V C, Nanoti S M.
CrossRef
Google scholar
|
[37] |
Mikulec J, Kleinová A, Cvengroš J.
CrossRef
Google scholar
|
[38] |
Sano Y, Choi K H, Korai Y.
CrossRef
Google scholar
|
[39] |
Bielansky P, Weinert A, Schönberger C.
CrossRef
Google scholar
|
[40] |
Pinho A, de Almeida M B, Mendes F L.
CrossRef
Google scholar
|
[41] |
Naik D V, Kumar V, Prasad B.
CrossRef
Google scholar
|
[42] |
Lindfors C, Paasikallio V, Kuoppala E.
CrossRef
Google scholar
|
[43] |
de Paz Carmona H, Vráblík A, Hidalgo Herrador J M.
CrossRef
Google scholar
|
[44] |
Shi Z, Zhao B, Tang S.
CrossRef
Google scholar
|
[45] |
Udayan A, Pandey A K, Sirohi R.
CrossRef
Google scholar
|
[46] |
Awogbemi O, Onuh E I, Inambao F L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low Carbon Technologies, 2019, 14(3): 417–425
CrossRef
Google scholar
|
[47] |
Aniza R, Chen W H, Lin Y Y.
CrossRef
Google scholar
|
[48] |
De Paz Carmona H, Horáček J, Tišler Z.
CrossRef
Google scholar
|
[49] |
de Paz Carmona H, de la Torre Alfaro O, Brito Alayon A.
CrossRef
Google scholar
|
[50] |
Hidalgo J M, Horaček J, Matoušek L.
CrossRef
Google scholar
|
[51] |
RashidUHazmiB. Advances in production of biodiesel from vegetable oils and animal fats. In: Lalthazuala Rokhum S, Halder G, Assabumrungrat S, eds. Biodiesel Production: Feedstocks, Catalysts, and Technologies. John Wiley & Sons Ltd., 2022
|
[52] |
Andari F, Kittel J, Fernandes J.
CrossRef
Google scholar
|
[53] |
ZhangFYiJPanW,
|
[54] |
Tian C, Li B, Liu Z.
CrossRef
Google scholar
|
[55] |
Cerqueira H, Caeiro G, Costa L.
CrossRef
Google scholar
|
[56] |
Sharma N, Jaiswal K K, Kumar V.
CrossRef
Google scholar
|
[57] |
Zou S, Wu Y, Yang g M.
CrossRef
Google scholar
|
[58] |
Xiu S, Shahbazi A. Bio-oil production and upgrading research: A review. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4406–4414
CrossRef
Google scholar
|
[59] |
ChengFBrewerC E. Best practices for bio-crude oil production at pilot scale using continuous flow reactors. In: Jacob-Lopes E, Aguiar Severo I, Queiroz Zepka L, eds. 3rd Generation Biofuels. Elsevier, 2022, 1061–119
|
[60] |
Park H, Cruz D, Tiller P.
CrossRef
Google scholar
|
[61] |
Zhang Q, Chang J, Wang T.
CrossRef
Google scholar
|
[62] |
Chang S H. Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy, 2018, 119: 263–276
CrossRef
Google scholar
|
[63] |
Lange J P. Renewable feedstocks: The problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015, 54(45): 13186–13197
CrossRef
Google scholar
|
[64] |
Dabros T M, Stummann M Z, Høj M.
CrossRef
Google scholar
|
[65] |
Alvarez-Chavez B J, Godbout S, Palacios-Rios J H.
CrossRef
Google scholar
|
[66] |
Zhang L, Liu R, Yin R.
CrossRef
Google scholar
|
[67] |
Pietraccini M, Badu P, Tait T.
CrossRef
Google scholar
|
[68] |
Sekar M, Mathimani T, Alagumalai A.
CrossRef
Google scholar
|
[69] |
Attia M, Farag S, Chaouki J. Upgrading of oils from biomass and waste: Catalytic hydrodeoxygenation. Catalysts, 2020, 10(12): 1381
CrossRef
Google scholar
|
[70] |
Zacher A H, Olarte M V, Santosa D M.
CrossRef
Google scholar
|
[71] |
Zhang L, Gong K, Lai J.
CrossRef
Google scholar
|
[72] |
Stummann M, Høj M, Schandel C B.
CrossRef
Google scholar
|
[73] |
Zhang X, Wang T, Ma L.
CrossRef
Google scholar
|
[74] |
Mortensen P M, Grunwaldt J D, Jensen P A.
CrossRef
Google scholar
|
[75] |
Ali H, Kansal S K, Saravanamurugan S. Upgradation of bio-oil derived from various biomass feedstocks via hydrodeoxygenation. In: Li H, Saravanamurugan S, Pandey A, eds. Biomass, Biofuels, Biochemicals. Elsevier, 2022, 287−308
|
[76] |
Zhang C, Zhang Z C. Essential quality attributes of tangible bio-oils from catalytic pyrolysis of lignocellulosic biomass. Chemical Record, 2019, 19(9): 2044–2057
CrossRef
Google scholar
|
[77] |
Eschenbacher A, Myrstad T, Bech N.
CrossRef
Google scholar
|
[78] |
Chen X, Chen Y, Yang H.
CrossRef
Google scholar
|
[79] |
Zhang C, Zhang Z C. Essential quality attributes of tangible bio-oils from catalytic pyrolysis of lignocellulosic biomass. Chemical Record, 2019, 19(9): 2044–2057
CrossRef
Google scholar
|
[80] |
Santosa D M, Kutnyakov I, Flake M.
CrossRef
Google scholar
|
[81] |
Dabros T M H, Stummann M Z, Høj M.
CrossRef
Google scholar
|
[82] |
de Mello L F, Gobbo R, Moure G T.
CrossRef
Google scholar
|
[83] |
SpeightJ G. The Refinery of the Future. Massachusetts: Gulf Professional Publishing, 2020
|
[84] |
Jones D S. Pujadó P P. Handbook of Petroleum Processing. Dordrecht: Springer Science & Business Media, 2006
|
[85] |
SadeghbeigiR. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Oxford: Butterworth-Heinemann, 2020
|
[86] |
Huynh T M, Armbruster U, Atia H.
CrossRef
Google scholar
|
[87] |
Thegarid N, Fogassy G, Schuurman Y.
CrossRef
Google scholar
|
[88] |
Seiser R, Olstad J L, Magrini K A.
CrossRef
Google scholar
|
[89] |
Corma A, Huber G W, Sauvanaud L.
CrossRef
Google scholar
|
[90] |
Huber G W, Chheda J N, Barrett C J.
CrossRef
Google scholar
|
[91] |
Ragauskas A J, Williams C K, Davison B H.
CrossRef
Google scholar
|
[92] |
de Rezende Pinho A, De Almeida M B B, Mendes F L.
CrossRef
Google scholar
|
[93] |
BrydenKWeatherbeeGHabibE T Jr. FCC pilot plant results with vegetable oil and pyrolysis oil feeds. In: Biomass 2013, Washington, DC. Washington, DC: U.S. Department of Energy, 2013, 1--17
|
[94] |
Su J, Cao L, Lee G.
CrossRef
Google scholar
|
[95] |
Bielansky P, Reichhold A, Schönberger C. Catalytic cracking of rapeseed oil to high octane gasoline and olefins. Chemical Engineering and Processing, 2010, 49(8): 873–880
CrossRef
Google scholar
|
[96] |
Dupain X, Costa D J, Schaverien C J.
CrossRef
Google scholar
|
[97] |
Yarlagadda P S, Hu Y, Bakhshi N N. Effect of hydrothermal treatment of HZSM-5 catalyst on its performance for the conversion of canola and mustard oils to hydrocarbons. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(2): 251–257
CrossRef
Google scholar
|
[98] |
Melero J A, Clavero M M, Calleja G.
CrossRef
Google scholar
|
[99] |
Santillan-Jimenez E, Pace R, Morgan T.
CrossRef
Google scholar
|
[100] |
Melin K, Strüven J O, Eidam P.
CrossRef
Google scholar
|
[101] |
Zhang Y, Alvarez-Majmutov A. Production of renewable liquid fuels by coprocessing HTL biocrude using hydrotreating and fluid catalytic cracking. Energy & Fuels, 2021, 35(23): 19535–19542
CrossRef
Google scholar
|
[102] |
BrydenKWeatherbeeGHabibE T. Flexible pilot plant technology for evaluation of unconventional feedstocks and processes. 2023–11-29, available at website of Grace
|
[103] |
ZacherA. Optimizing Co-processing of Bio-oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR). Pacific Northwest National Laboratory Report. 2015
|
[104] |
Vogt E T, Weckhuysen B M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 2015, 44(20): 7342–7370
CrossRef
Google scholar
|
[105] |
Pinho A, de Almeida M B, Mendes F L.
CrossRef
Google scholar
|
[106] |
Lindfors C, Elliott D C, Prins W.
CrossRef
Google scholar
|
[107] |
Chen X, Che Q, Li S.
CrossRef
Google scholar
|
[108] |
Iisa K, French R J, Orton K A.
CrossRef
Google scholar
|
[109] |
Tran Q K, Le M L, Ly H V.
CrossRef
Google scholar
|
[110] |
Dayton D C, Hlebak J, Carpenter J R.
CrossRef
Google scholar
|
[111] |
Wang K, Dayton D C, Peters J E.
CrossRef
Google scholar
|
[112] |
Arbogast S, Bellman D, Paynter D, et al. Commercialization of pyrolysis oil in existing refineries—Part 1. 2017-1-11, available at website of Hydrocarbon Processing
|
[113] |
Samolada M, Baldauf W, Vasalos I. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel, 1998, 77(14): 1667–1675
CrossRef
Google scholar
|
[114] |
Gueudré L, Chapon F, Mirodatos C.
CrossRef
Google scholar
|
[115] |
Lutz H, Büchele M, Knaus F.
CrossRef
Google scholar
|
[116] |
de Miguel Mercader F, Groeneveld M, Kersten S.
CrossRef
Google scholar
|
[117] |
de Miguel Mercader F, Groeneveld M, Kersten S R A.
CrossRef
Google scholar
|
[118] |
Baldauf W, Balfanz U, Rupp M. Upgrading of flash pyrolysis oil and utilization in refineries. Biomass and Bioenergy, 1994, 7(1–6): 237–244
CrossRef
Google scholar
|
[119] |
Fogassy G, Thegarid N, Toussaint G.
CrossRef
Google scholar
|
[120] |
Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Processing Technology, 1995, 45(3): 161–183
CrossRef
Google scholar
|
[121] |
Lappas A, Bezergianni S, Vasalos I. Production of biofuels via co-processing in conventional refining processes. Catalysis Today, 2009, 145(1–2): 55–62
CrossRef
Google scholar
|
[122] |
Wang C, Li M, Fang Y. Coprocessing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser. Industrial & Engineering Chemistry Research, 2016, 55(12): 3525–3534
CrossRef
Google scholar
|
[123] |
Agblevor F A, Mante O, McClung R.
CrossRef
Google scholar
|
[124] |
Talmadge M S, Baldwin R M, Biddy M J.
CrossRef
Google scholar
|
[125] |
YangW C. Handbook of Fluidization and Fluid-particle Systems. New York: CRC Press, 2003
|
[126] |
Komvokis V, Tan L X L, Clough M, et al. Zeolites in fluid catalytic cracking (FCC). In: Xiao F, Meng X, eds. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Springer, 2016, 271–297
|
[127] |
Schuurman Y, Fogassy G, Mirodatos C. Tomorrow’s biofuels: Hybrid biogasoline by co-processing in FCC units. In: Triantafyllidis K S, Lappas A A, Stöcker M, eds. The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. Elsevier, 2013, 321–349
|
[128] |
Ma Z, Wei L, Zhou W.
CrossRef
Google scholar
|
[129] |
CormaAOrchillésA V. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35–36: 21–30
|
[130] |
Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
CrossRef
Google scholar
|
[131] |
Jae J, Tompsett G A, Lin Y C.
CrossRef
Google scholar
|
[132] |
Ferella F, D’Adamo I, Leone S.
CrossRef
Google scholar
|
[133] |
Ferreira J M M, Sousa-Aguiar E F, Aranda D A G. FCC catalyst accessibility—A review. Catalysts, 2023, 13(4): 784
CrossRef
Google scholar
|
[134] |
Ihli J, Jacob R R, Holler M.
CrossRef
Google scholar
|
[135] |
Fogassy G, Thegarid N, Schuurman Y.
CrossRef
Google scholar
|
[136] |
Huuska M, Rintala J. Effect of catalyst acidity on the hydrogenolysis of anisole. Journal of Catalysis, 1985, 94(1): 230–238
CrossRef
Google scholar
|
[137] |
Fogassy G, Thegarid N, Schuurman Y.
CrossRef
Google scholar
|
[138] |
Graça I, Comparot J D, Laforge S.
CrossRef
Google scholar
|
[139] |
Graça I, Ribeiro F R, Cerqueira H.
CrossRef
Google scholar
|
[140] |
Gerards R, Fernandes A, Graça I.
CrossRef
Google scholar
|
[141] |
Akah A. Application of rare earths in fluid catalytic cracking: A review. Journal of Rare Earths, 2017, 35(10): 941–956
CrossRef
Google scholar
|
[142] |
Clough M, Pope J C, Lin L T X.
CrossRef
Google scholar
|
[143] |
Zacher A H, Olarte M V, Santosa D M.
CrossRef
Google scholar
|
[144] |
Elliott D C. Water, alkali and char in flash pyrolysis oils. Biomass and Bioenergy, 1994, 7(1–6): 179–185
CrossRef
Google scholar
|
[145] |
Javaid A, Ryan T, Berg G.
CrossRef
Google scholar
|
[146] |
Hoekstra E, Hogendoorn K J, Wang X.
CrossRef
Google scholar
|
[147] |
Zhong D, Chang Z, Zeng K.
CrossRef
Google scholar
|
[148] |
Baldwin R M, Feik C J. Bio-oil stabilization and upgrading by hot gas filtration. Energy & Fuels, 2013, 27(6): 3224–3238
CrossRef
Google scholar
|
[149] |
Su J, Van Dyk S, Saddler J. Repurposing oil refineries to “stand-alone units” that refine lipids/oleochemicals to produce low-carbon intensive, drop-in biofuels. Journal of Cleaner Production, 2022, 376: 134335
CrossRef
Google scholar
|
[150] |
Chen S. Green oil production by hydroprocessing. International Journal of Clean Coal Energy, 2012, 1(4): 43–55
CrossRef
Google scholar
|
[151] |
Xu J, Brodu N, Abdelouahed L.
CrossRef
Google scholar
|
[152] |
Tóth C, Sági D, Hancsók J. Diesel fuel production by catalytic hydrogenation of light cycle oil and waste cooking oil containing gas oil. Topics in Catalysis, 2015, 58(14–17): 948–960
CrossRef
Google scholar
|
[153] |
Bezergianni S, Dimitriadis A, Karonis D. Diesel decarbonization via effective catalytic co-hydroprocessing of residual lipids with gas–oil. Fuel, 2014, 136: 366–373
CrossRef
Google scholar
|
[154] |
Kubička D, Tukač V. Hydrotreating of triglyceride-based feedstocks in refineries. In: Murzin D Y, ed. Advances in Chemical Engineering. Elsevier, 2013, 141–194
|
[155] |
Sánchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 2008, 99(13): 5270–5295
CrossRef
Google scholar
|
[156] |
Wang J, Singer S D, Souto B A.
CrossRef
Google scholar
|
[157] |
Guilhaume N, Schuurman Y, Geantet C. The role of catalysis in the valorization of woody biomass fast pyrolysis liquids: Overview and contribution of IRCELYON. Catalysis Today, 2021, 373: 5–23
CrossRef
Google scholar
|
[158] |
Chen S Y, Nishi M, Mochizuki T.
CrossRef
Google scholar
|
[159] |
de Santos Brandão J G, Manmohandas H V. A simplified kinetic model for continuous hydrotreating of HTL biocrude. Thesis for the Master’s Degree. Aalborg: Aalborg University, 2020 (in Denmark)
|
[160] |
Bui V N, Toussaint G, Laurenti D.
CrossRef
Google scholar
|
[161] |
Pinheiro A, Hudebine D, Dupassieux N.
CrossRef
Google scholar
|
[162] |
Zhu C, Gutiérrez O Y, Santosa D M.
CrossRef
Google scholar
|
[163] |
Sauvanaud L, Mathieu Y, Corma A.
CrossRef
Google scholar
|
[164] |
Baker E G, Elliott D C. Catalytic hydrotreating of biomass-derived oils. In: Soltes Ed J, Milne T A, eds. Pyrolysis Oils from Biomass. ACS Publications. 1988
|
[165] |
Xing T, Alvarez-Majmutov A, Gieleciak R.
CrossRef
Google scholar
|
[166] |
Badoga S, Alvarez-Majmutov A, Chen J. Mild hydrotreatment of biocrude derived from hydrothermal liquefaction of agriculture waste: Improving biocrude miscibility with vacuum gas oil to aid co-processing. Biofuels, Bioproducts & Biorefining, 2022, 16(3): 785–798
CrossRef
Google scholar
|
[167] |
Pinheiro A, Hudebine D, Dupassieux N.
CrossRef
Google scholar
|
[168] |
Chen W, Cao J, Fu W.
CrossRef
Google scholar
|
[169] |
Pinheiro A, Dupassieux N, Hudebine D.
CrossRef
Google scholar
|
[170] |
PhilippeMRichardFHudebineD,
|
[171] |
Bezergianni S, Dagonikou V. Effect of CO2 on catalytic hydrotreatment of gas−oil. Canadian Journal of Chemical Engineering, 2015, 93(6): 1017–1023
CrossRef
Google scholar
|
[172] |
Dimitriadis A, Meletidis G, Pfisterer U.
CrossRef
Google scholar
|
[173] |
Borugadda V B, Chand R, Dalai A K. Screening suitable refinery distillates for blending with HTL bio-crude and evaluating the co-processing potential at petroleum refineries. Energy Conversion and Management, 2020, 222: 113186
CrossRef
Google scholar
|
[174] |
Sánchez-Anaya O, Mederos-Nieto F S, Elizalde I.
CrossRef
Google scholar
|
[175] |
Sági D, Baladincz P, Varga Z.
CrossRef
Google scholar
|
[176] |
Mortensen P M, Grunwaldt J D, Jensen P A.
CrossRef
Google scholar
|
[177] |
Nunes V O, Fraga A C, Silva R V S.
CrossRef
Google scholar
|
[178] |
Li T, Su J, Wang H.
CrossRef
Google scholar
|
[179] |
Egeberg R, Knudsen K, Nyström S.
|
[180] |
de Paz Carmona H, Svobodova E, Tišler Z K.
CrossRef
Google scholar
|
[181] |
Pan L, Liu P, Li Z. A discussion on China’s vehicle fuel policy: Based on the development route optimization of refining industry. Energy Policy, 2018, 114: 403–412
CrossRef
Google scholar
|
[182] |
Williams M, Minjares R. A Technical Summary of Euro 6/VI Vehicle Emission Standards. The International Council on Clean Transportation (ICCT) Report, 2016
|
[183] |
Wu Y, Peng L, Qin L.
CrossRef
Google scholar
|
AAEM | Alkali and alkaline earth metal |
CAPEX | Capital expenditure |
CFP | Catalytic fast pyrolysis |
CTO | Catalyst-to-oil |
DDO | Direct deoxygenation |
DDS | Direct desulfurization |
DEDAD | N,N-diethyldodecanamide |
DN | Denitrogenation |
DO | Deoxygenation |
FCC | Fluid catalytic cracking |
FP | Fast pyrolysis |
HDM | Hydrodemetallization |
HDN | Hydrodenitrogenation |
HDO | Hydrodeoxygenation |
HDS | Hydrodesulfurization |
HDT | Hydrotreating |
HHV | Higher heating value |
HTL | Hydrothermal liquefaction |
HVGO | Heavy vacuum gas oil |
HYD | Hydrogenation |
LCO | Light cycle oil |
MAT | Micro-activity testing |
Ni | Nickel |
OPEX | Operating expense |
PAH | Polycyclic aromatic hydrocarbon |
SRGO | Straight run gas oil |
TAN | Total acid number |
V | Vanadium |
VGO | Vacuum gas oil |
WCO | Waste cooking oil |
/
〈 | 〉 |