Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions
Received date: 26 Jul 2023
Accepted date: 28 Sep 2023
Copyright
In recent years, the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices. Flexible lithium-ion batteries (FLIBs) have emerged as the most attractive and versatile flexible electronic storage devices available. Carbon nanotubes (CNTs) are hollow-structured tubular nanomaterials with high electrical conductivity, large specific surface area, and excellent mechanical properties. Graphene (G) is to some extent comparable to CNTs, because both have unlimited value in flexible electrodes. Herein, a systematic summary of the application of CNT and G in FLIBs electrodes is presented, including different functional applications and services at different temperatures. Furthermore, the effects of electrode structures, including powder, wire-shaped, and film-shaped structures, on electrochemical properties is highlighted. The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions, including bendability, stretchability, foldability, self-healing, and self-detecting, are systematically reviewed. The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.
Yanzhi Cai , Zhongyi Hu , Laifei Cheng , Siyu Guo , Tingting Liu , Shaohua Huang , Dengpeng Chen , Yuhan Wang , Haiming Yu , Yuan Zhou . Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions[J]. Frontiers in Energy, . DOI: 10.1007/s11708-024-0911-2
1 |
Zhu Y H , Yang X Y , Liu T .
|
2 |
Li Y , Liu Y , Sun J .
|
3 |
Nathan A , Ahnood A , Cole M T .
|
4 |
Lochner C M , Khan Y , Pierre A .
|
5 |
Misra V , Bozkurt A , Calhoun B .
|
6 |
Jia W , Wang X , Imani S .
|
7 |
Song Z , Wang X , Lv C .
|
8 |
Stoppa M , Chiolerio A . Wearable electronics and smart textiles: A critical review. Sensors, 2014, 14(7): 11957–11992
|
9 |
Wang X , Lu X , Liu B .
|
10 |
Wu Z , Wang Y , Liu X .
|
11 |
Miao J , Fan T . Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 2023, 202: 495–527
|
12 |
Wang F , Zhao S , Jiang Q .
|
13 |
Choi K H , Ahn D B , Lee S Y . Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Letters, 2018, 3(1): 220–236
|
14 |
Deng Q , Fu Y , Zhu C .
|
15 |
Tao T , Lu S , Chen Y . A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375
|
16 |
Tarascon J M , Armand M . Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
|
17 |
ChenYLiuSBiZ,
|
18 |
Jetybayeva A , Aaron D S , Belharouak I .
|
19 |
Wang Y , Yang Q , Zhao Y .
|
20 |
Fan X , Liu B , Ding J .
|
21 |
Fang Z , Wang J , Wu H .
|
22 |
Fu K K , Cheng J , Li T .
|
23 |
Gong X , Yang Q , Zhi C .
|
24 |
Jeong I , Han D Y , Hwang J .
|
25 |
Kim S D , Sarkar A , Ahn J H . Graphene-based nanomaterials for flexible and stretchable batteries. Small, 2021, 17(48): 2006262
|
26 |
Liu W , Song M S , Kong B .
|
27 |
Song W J , Yoo S , Song G .
|
28 |
Yan C , Lee P S . Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443–3460
|
29 |
Zhai Q , Xiang F , Cheng F .
|
30 |
Zhou G , Li F , Cheng H M . Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
|
31 |
Lee S M , Kim J H , Ahn J H . Graphene as a flexible electronic material: Mechanical limitations by defect formation and efforts to overcome. Materials Today, 2015, 18(6): 336–344
|
32 |
Zhang Y , Jiao Y , Liao M .
|
33 |
Islam J , Chowdhury F I , Raza W .
|
34 |
Marriam I , Tebyetekerwa M , Xu Z .
|
35 |
Jayaraman T , Murthy A P , Elakkiya V .
|
36 |
Lee H , Yoo J K , Park J H .
|
37 |
Wang J , Ma C , Tang J .
|
38 |
Kumar S , Nehra M , Kedia D .
|
39 |
De Volder M F L , Tawfick S H , Baughman R H .
|
40 |
Zhang Q , Huang J Q , Qian W Z .
|
41 |
Devi R , Tapadia K , Kant T .
|
42 |
Endo M , Muramatsu H , Hayashi T .
|
43 |
Nguyen T H , Fraiwan A , Choi S . Paper-based batteries: A review. Biosensors & Bioelectronics, 2014, 54: 640–649
|
44 |
Seo Y , Hwang B . Mulberry-paper-based composites for flexible electronics and energy storage devices. Cellulose, 2019, 26(16): 8867–8875
|
45 |
Shen L L , Zhang G R , Etzold B J M . Paper-based microfluidics for electrochemical applications. ChemElectroChem, 2020, 7(1): 10–30
|
46 |
Thakur A , Devi P . Paper-based flexible devices for energy harvesting, conversion and storage applications: A review. Nano Energy, 2022, 94: 106927
|
47 |
Yao B , Zhang J , Kou T .
|
48 |
ZhouWZhangYCuiC,
|
49 |
Chen S , Qiu L , Cheng H M . Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 2020, 120(5): 2811–2878
|
50 |
Liu Y , Shen X , Wang X .
|
51 |
Nagpure A S , Gogoi P , Lucas N .
|
52 |
Seman R N A R , Azam M A , Mohamad A A . Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renewable & Sustainable Energy Reviews, 2017, 75: 644–659
|
53 |
Feng T , Chen W , Li W .
|
54 |
Zhu S , Sheng J , Chen Y .
|
55 |
Chen X , Ma Y . Wearable lithium-ion batteries based on carbon nanotubes and graphene. Advanced Materials Technologies, 2018, 3(10): 1800041
|
56 |
Kumar R , Joanni E , Savu R .
|
57 |
Sharma V , Kagdada H L , Jha P K . Four-fold enhancement in the thermoelectric power factor of germanium selenide monolayer by adsorption of graphene quantum dot. Energy, 2020, 196: 117104
|
58 |
Wen L , Li F , Cheng H M . Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Advanced Materials, 2016, 28(22): 4306–4337
|
59 |
Zhao X , E J , Wu G .
|
60 |
Li L , Zhang D , Deng J .
|
61 |
He Y , Chen W , Gao C .
|
62 |
Abdollahi A , Abnavi A , Ghasemi S .
|
63 |
Cao S , Shi L , Miao M .
|
64 |
Cheng Y , Chen G , Wu H .
|
65 |
Huang L , Guan Q , Cheng J .
|
66 |
Ren J , Ren R P , Lv Y K . A new anode for lithium-ion batteries based on single-walled carbon nanotubes and graphene: Improved performance through a binary network design. Chemistry, An Asian Journal, 2018, 13(9): 1223–1227
|
67 |
Sun X , Liu Z , Li N .
|
68 |
Xu C , Jing Y , He J .
|
69 |
Yi Z , Lin N , Zhao Y .
|
70 |
Zeng T , Feng D , Peng Q .
|
71 |
Fan P , Liu H , Liao L .
|
72 |
Ren J , Ren R P , Lv Y K . A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chemical Engineering Journal, 2018, 353: 419–424
|
73 |
Wang M S , Wang Z Q , Chen Z .
|
74 |
Xiang T , Tao S , Xu W .
|
75 |
Yang Y , Yang X , Chen S .
|
76 |
Yildiz O , Dirican M , Fang X .
|
77 |
Zhao X , Wang G , Zhou Y .
|
78 |
Fu K , Yildiz O , Bhanushali H .
|
79 |
Lee S , Song H , Hwang J Y .
|
80 |
Li Y , Wang P , Bao Y .
|
81 |
Liang M , Wang W , Jiang Y .
|
82 |
Wang X , Sun L , Susantyoko R A .
|
83 |
Wu K , Xu G , Pan D .
|
84 |
Yu X , Jiang Y , Yang X .
|
85 |
Zhang L , Huang Y , Zhang Y .
|
86 |
Cai H , Han K , Jiang H .
|
87 |
Yu Y , Luo Y , Wu H .
|
88 |
Abnavi A , Sadati Faramarzi M , Abdollahi A .
|
89 |
Alaf M , Tocoglu U , Kayis F .
|
90 |
Li Y , Ye D , Liu W .
|
91 |
Wang T , Ji X , Wu F .
|
92 |
Zhang J , Zhang W , He T .
|
93 |
Ren H M , Ding Y H , Chang F H .
|
94 |
Shang Y , Liu X , Zhang J .
|
95 |
Wang H , He M , Zhang Y . Carbon nanotube films: Preparation and application in flexible electronics. Acta Physico-Chimica Sinica, 2019, 35(11): 1207–1223
|
96 |
Wang J , Li L , Wong C L .
|
97 |
Wang J , Wang G , Wang H . Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2015, 182: 192–201
|
98 |
Wang Q , Xing L , Xue X . SnO2-graphene nanocomposite paper as both the anode and current collector of lithium-ion battery with high performance and flexibility. Materials Letters, 2017, 209: 155–158
|
99 |
Xie C , Xu N , Shi P .
|
100 |
Yoon S , Lee S , Kim S .
|
101 |
Yu J , Xia J , Guan X .
|
102 |
Zhang H , Jing S , Hu Y .
|
103 |
Zhang M , Li L , Jian X .
|
104 |
Aliahmad N , Agarwal M , Shrestha S .
|
105 |
Hu L , Wu H , La Mantia F .
|
106 |
Li N , Chen Z , Ren W .
|
107 |
Mezzomo L , Ferrara C , Brugnetti G .
|
108 |
Shi Y , Wen L , Zhou G .
|
109 |
Song H , Jeon S Y , Jeong Y . Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir. Carbon, 2019, 147: 441–450
|
110 |
Weng W , Sun Q , Zhang Y .
|
111 |
Zhang T , Han S , Guo W .
|
112 |
Zhong G , Yu J , Zhuang P .
|
113 |
Gu T , Cao Z , Wei B . All-manganese-based binder-free stretchable lithium-ion batteries. Advanced Energy Materials, 2017, 7(18): 1700369
|
114 |
Jung Y , Jeong Y C , Kim J H .
|
115 |
Ren J , Zhang Y , Bai W .
|
116 |
Liu T , Zhang M , Wang Y L .
|
117 |
Wei D , Shen W , Xu T .
|
118 |
Mu K W , Liu K X , Wang Z Y .
|
119 |
Jiang X , Chen Y , Meng X .
|
120 |
Liu Y , Zhang R , Wang J .
|
121 |
Guo L , Zhao N , Li J .
|
122 |
Zhang C X , Mei S L , Chen X H .
|
123 |
Liu Z , Qin L , Cao X .
|
124 |
Zhang X , Li Y , Lin Y .
|
125 |
Bao Y , Zhang X , Zhang X .
|
126 |
Fang X , Shen C , Ge M .
|
127 |
Yang P , Xi X , Huang T .
|
128 |
Wu H , Shevlin S A , Meng Q .
|
129 |
Wu H , Meng Q , Yang Q .
|
130 |
Wu S , Wu H , Zou M .
|
131 |
Wang K , Luo S , Wu Y .
|
132 |
Yuan W , Wang B , Wu H .
|
133 |
Feng H , Tang L , Zeng G .
|
134 |
Jiang L , Yuan X , Liang J .
|
135 |
Kwon Y H , Woo S W , Jung H R .
|
136 |
Ren J , Li L , Chen C .
|
137 |
Sun C F , Zhu H , Baker E B III .
|
138 |
Zhang Y , Bai W , Cheng X .
|
139 |
Zhang X , Xu Z , Kong S .
|
140 |
Ahmad Y , Colin M , Gervillie-Mouravieff C .
|
141 |
Cheng X , Pan J , Zhao Y .
|
142 |
Guo X , Chen R , Wu F . Use of thin film materials in flexible lithium-ion batteries. Journal of the Chinese Ceramic Society, 2019, 47(10): 1386–1395
|
143 |
Chew S Y , Ng S H , Wang J .
|
144 |
Kim S D , Lee J G , Kim T G .
|
145 |
Li F , Yue H , Yang Z .
|
146 |
Guo W , Yan X , Hou F .
|
147 |
Kang T , Ma Z , Zuo X .
|
148 |
Fu J , Liu H , Liao L .
|
149 |
Guo W , Si W , Zhang T .
|
150 |
Cao H , Zhou X , Deng W .
|
151 |
Han J H , Shin K H , Lee Y J . Scalable binder-free freestanding electrodes based on a cellulose acetate-assisted carbon nanotube fibrous network for practical flexible Li-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(5): 6375–6384
|
152 |
Noerochim L , Wang J Z , Chou S L .
|
153 |
Chen X , Tang H , Huang Z .
|
154 |
Park S K , Seong C Y , Yoo S .
|
155 |
Liu X , Zhang X , Ma S .
|
156 |
Ji Z , Wang H , Chen Z .
|
157 |
Zhao Y , Guo J . Development of flexible Li-ion batteries for flexible electronics. InfoMat, 2020, 2(5): 866–878
|
158 |
Kammoun M , Berg S , Ardebili H . Stretchable spiral thin-film battery capable of out-of-plane deformation. Journal of Power Sources, 2016, 332: 406–412
|
159 |
Hu J W , Wu Z P , Zhong S W .
|
160 |
Tong X , Tian Z , Sun J .
|
161 |
Ezeigwe E R , Dong L , Manjunatha R .
|
162 |
Nam J , Jang W , Rajeev K K .
|
163 |
Nam J , Kim E , Rajeev K K .
|
164 |
Wang Y , Xu H , Chen X .
|
165 |
Zhao Y , Zhang Y , Sun H .
|
166 |
Rao J , Liu N , Zhang Z .
|
167 |
Kuznetsov O A , Mohanty S , Pigos E .
|
/
〈 |
|
〉 |