Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions
Yanzhi Cai, Zhongyi Hu, Laifei Cheng, Siyu Guo, Tingting Liu, Shaohua Huang, Dengpeng Chen, Yuhan Wang, Haiming Yu, Yuan Zhou
Application and structure of carbon nanotube and graphene-based flexible electrode materials and assembly modes of flexible lithium-ion batteries toward different functions
In recent years, the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices. Flexible lithium-ion batteries (FLIBs) have emerged as the most attractive and versatile flexible electronic storage devices available. Carbon nanotubes (CNTs) are hollow-structured tubular nanomaterials with high electrical conductivity, large specific surface area, and excellent mechanical properties. Graphene (G) is to some extent comparable to CNTs, because both have unlimited value in flexible electrodes. Herein, a systematic summary of the application of CNT and G in FLIBs electrodes is presented, including different functional applications and services at different temperatures. Furthermore, the effects of electrode structures, including powder, wire-shaped, and film-shaped structures, on electrochemical properties is highlighted. The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions, including bendability, stretchability, foldability, self-healing, and self-detecting, are systematically reviewed. The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.
flexible lithium-ion batteries (FLIBs) / carbon nanotubes (CNTs) / graphene (G) / electrode structure / function
[1] |
Zhu Y H, Yang X Y, Liu T.
CrossRef
Google scholar
|
[2] |
Li Y, Liu Y, Sun J.
|
[3] |
Nathan A, Ahnood A, Cole M T.
CrossRef
Google scholar
|
[4] |
Lochner C M, Khan Y, Pierre A.
CrossRef
Google scholar
|
[5] |
Misra V, Bozkurt A, Calhoun B.
CrossRef
Google scholar
|
[6] |
Jia W, Wang X, Imani S.
CrossRef
Google scholar
|
[7] |
Song Z, Wang X, Lv C.
CrossRef
Google scholar
|
[8] |
Stoppa M, Chiolerio A. Wearable electronics and smart textiles: A critical review. Sensors, 2014, 14(7): 11957–11992
CrossRef
Google scholar
|
[9] |
Wang X, Lu X, Liu B.
CrossRef
Google scholar
|
[10] |
Wu Z, Wang Y, Liu X.
CrossRef
Google scholar
|
[11] |
Miao J, Fan T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 2023, 202: 495–527
CrossRef
Google scholar
|
[12] |
Wang F, Zhao S, Jiang Q.
CrossRef
Google scholar
|
[13] |
Choi K H, Ahn D B, Lee S Y. Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Letters, 2018, 3(1): 220–236
CrossRef
Google scholar
|
[14] |
Deng Q, Fu Y, Zhu C.
CrossRef
Google scholar
|
[15] |
Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375
CrossRef
Google scholar
|
[16] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
CrossRef
Google scholar
|
[17] |
ChenYLiuSBiZ,
|
[18] |
Jetybayeva A, Aaron D S, Belharouak I.
CrossRef
Google scholar
|
[19] |
Wang Y, Yang Q, Zhao Y.
CrossRef
Google scholar
|
[20] |
Fan X, Liu B, Ding J.
CrossRef
Google scholar
|
[21] |
Fang Z, Wang J, Wu H.
CrossRef
Google scholar
|
[22] |
Fu K K, Cheng J, Li T.
CrossRef
Google scholar
|
[23] |
Gong X, Yang Q, Zhi C.
CrossRef
Google scholar
|
[24] |
Jeong I, Han D Y, Hwang J.
CrossRef
Google scholar
|
[25] |
Kim S D, Sarkar A, Ahn J H. Graphene-based nanomaterials for flexible and stretchable batteries. Small, 2021, 17(48): 2006262
CrossRef
Google scholar
|
[26] |
Liu W, Song M S, Kong B.
CrossRef
Google scholar
|
[27] |
Song W J, Yoo S, Song G.
CrossRef
Google scholar
|
[28] |
Yan C, Lee P S. Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443–3460
CrossRef
Google scholar
|
[29] |
Zhai Q, Xiang F, Cheng F.
CrossRef
Google scholar
|
[30] |
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
CrossRef
Google scholar
|
[31] |
Lee S M, Kim J H, Ahn J H. Graphene as a flexible electronic material: Mechanical limitations by defect formation and efforts to overcome. Materials Today, 2015, 18(6): 336–344
CrossRef
Google scholar
|
[32] |
Zhang Y, Jiao Y, Liao M.
CrossRef
Google scholar
|
[33] |
Islam J, Chowdhury F I, Raza W.
CrossRef
Google scholar
|
[34] |
Marriam I, Tebyetekerwa M, Xu Z.
CrossRef
Google scholar
|
[35] |
Jayaraman T, Murthy A P, Elakkiya V.
CrossRef
Google scholar
|
[36] |
Lee H, Yoo J K, Park J H.
CrossRef
Google scholar
|
[37] |
Wang J, Ma C, Tang J.
CrossRef
Google scholar
|
[38] |
Kumar S, Nehra M, Kedia D.
CrossRef
Google scholar
|
[39] |
De Volder M F L, Tawfick S H, Baughman R H.
CrossRef
Google scholar
|
[40] |
Zhang Q, Huang J Q, Qian W Z.
CrossRef
Google scholar
|
[41] |
Devi R, Tapadia K, Kant T.
CrossRef
Google scholar
|
[42] |
Endo M, Muramatsu H, Hayashi T.
CrossRef
Google scholar
|
[43] |
Nguyen T H, Fraiwan A, Choi S. Paper-based batteries: A review. Biosensors & Bioelectronics, 2014, 54: 640–649
CrossRef
Google scholar
|
[44] |
Seo Y, Hwang B. Mulberry-paper-based composites for flexible electronics and energy storage devices. Cellulose, 2019, 26(16): 8867–8875
CrossRef
Google scholar
|
[45] |
Shen L L, Zhang G R, Etzold B J M. Paper-based microfluidics for electrochemical applications. ChemElectroChem, 2020, 7(1): 10–30
CrossRef
Google scholar
|
[46] |
Thakur A, Devi P. Paper-based flexible devices for energy harvesting, conversion and storage applications: A review. Nano Energy, 2022, 94: 106927
CrossRef
Google scholar
|
[47] |
Yao B, Zhang J, Kou T.
CrossRef
Google scholar
|
[48] |
ZhouWZhangYCuiC,
|
[49] |
Chen S, Qiu L, Cheng H M. Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 2020, 120(5): 2811–2878
CrossRef
Google scholar
|
[50] |
Liu Y, Shen X, Wang X.
CrossRef
Google scholar
|
[51] |
Nagpure A S, Gogoi P, Lucas N.
CrossRef
Google scholar
|
[52] |
Seman R N A R, Azam M A, Mohamad A A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renewable & Sustainable Energy Reviews, 2017, 75: 644–659
CrossRef
Google scholar
|
[53] |
Feng T, Chen W, Li W.
CrossRef
Google scholar
|
[54] |
Zhu S, Sheng J, Chen Y.
CrossRef
Google scholar
|
[55] |
Chen X, Ma Y. Wearable lithium-ion batteries based on carbon nanotubes and graphene. Advanced Materials Technologies, 2018, 3(10): 1800041
CrossRef
Google scholar
|
[56] |
Kumar R, Joanni E, Savu R.
CrossRef
Google scholar
|
[57] |
Sharma V, Kagdada H L, Jha P K. Four-fold enhancement in the thermoelectric power factor of germanium selenide monolayer by adsorption of graphene quantum dot. Energy, 2020, 196: 117104
CrossRef
Google scholar
|
[58] |
Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Advanced Materials, 2016, 28(22): 4306–4337
CrossRef
Google scholar
|
[59] |
Zhao X, E J, Wu G.
CrossRef
Google scholar
|
[60] |
Li L, Zhang D, Deng J.
CrossRef
Google scholar
|
[61] |
He Y, Chen W, Gao C.
CrossRef
Google scholar
|
[62] |
Abdollahi A, Abnavi A, Ghasemi S.
CrossRef
Google scholar
|
[63] |
Cao S, Shi L, Miao M.
CrossRef
Google scholar
|
[64] |
Cheng Y, Chen G, Wu H.
CrossRef
Google scholar
|
[65] |
Huang L, Guan Q, Cheng J.
CrossRef
Google scholar
|
[66] |
Ren J, Ren R P, Lv Y K. A new anode for lithium-ion batteries based on single-walled carbon nanotubes and graphene: Improved performance through a binary network design. Chemistry, An Asian Journal, 2018, 13(9): 1223–1227
CrossRef
Google scholar
|
[67] |
Sun X, Liu Z, Li N.
CrossRef
Google scholar
|
[68] |
Xu C, Jing Y, He J.
CrossRef
Google scholar
|
[69] |
Yi Z, Lin N, Zhao Y.
CrossRef
Google scholar
|
[70] |
Zeng T, Feng D, Peng Q.
CrossRef
Google scholar
|
[71] |
Fan P, Liu H, Liao L.
CrossRef
Google scholar
|
[72] |
Ren J, Ren R P, Lv Y K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chemical Engineering Journal, 2018, 353: 419–424
CrossRef
Google scholar
|
[73] |
Wang M S, Wang Z Q, Chen Z.
CrossRef
Google scholar
|
[74] |
Xiang T, Tao S, Xu W.
CrossRef
Google scholar
|
[75] |
Yang Y, Yang X, Chen S.
CrossRef
Google scholar
|
[76] |
Yildiz O, Dirican M, Fang X.
CrossRef
Google scholar
|
[77] |
Zhao X, Wang G, Zhou Y.
CrossRef
Google scholar
|
[78] |
Fu K, Yildiz O, Bhanushali H.
CrossRef
Google scholar
|
[79] |
Lee S, Song H, Hwang J Y.
CrossRef
Google scholar
|
[80] |
Li Y, Wang P, Bao Y.
CrossRef
Google scholar
|
[81] |
Liang M, Wang W, Jiang Y.
CrossRef
Google scholar
|
[82] |
Wang X, Sun L, Susantyoko R A.
CrossRef
Google scholar
|
[83] |
Wu K, Xu G, Pan D.
CrossRef
Google scholar
|
[84] |
Yu X, Jiang Y, Yang X.
CrossRef
Google scholar
|
[85] |
Zhang L, Huang Y, Zhang Y.
CrossRef
Google scholar
|
[86] |
Cai H, Han K, Jiang H.
CrossRef
Google scholar
|
[87] |
Yu Y, Luo Y, Wu H.
CrossRef
Google scholar
|
[88] |
Abnavi A, Sadati Faramarzi M, Abdollahi A.
CrossRef
Google scholar
|
[89] |
Alaf M, Tocoglu U, Kayis F.
CrossRef
Google scholar
|
[90] |
Li Y, Ye D, Liu W.
CrossRef
Google scholar
|
[91] |
Wang T, Ji X, Wu F.
CrossRef
Google scholar
|
[92] |
Zhang J, Zhang W, He T.
CrossRef
Google scholar
|
[93] |
Ren H M, Ding Y H, Chang F H.
CrossRef
Google scholar
|
[94] |
Shang Y, Liu X, Zhang J.
CrossRef
Google scholar
|
[95] |
Wang H, He M, Zhang Y. Carbon nanotube films: Preparation and application in flexible electronics. Acta Physico-Chimica Sinica, 2019, 35(11): 1207–1223
CrossRef
Google scholar
|
[96] |
Wang J, Li L, Wong C L.
CrossRef
Google scholar
|
[97] |
Wang J, Wang G, Wang H. Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2015, 182: 192–201
CrossRef
Google scholar
|
[98] |
Wang Q, Xing L, Xue X. SnO2-graphene nanocomposite paper as both the anode and current collector of lithium-ion battery with high performance and flexibility. Materials Letters, 2017, 209: 155–158
CrossRef
Google scholar
|
[99] |
Xie C, Xu N, Shi P.
CrossRef
Google scholar
|
[100] |
Yoon S, Lee S, Kim S.
CrossRef
Google scholar
|
[101] |
Yu J, Xia J, Guan X.
CrossRef
Google scholar
|
[102] |
Zhang H, Jing S, Hu Y.
CrossRef
Google scholar
|
[103] |
Zhang M, Li L, Jian X.
CrossRef
Google scholar
|
[104] |
Aliahmad N, Agarwal M, Shrestha S.
CrossRef
Google scholar
|
[105] |
Hu L, Wu H, La Mantia F.
CrossRef
Google scholar
|
[106] |
Li N, Chen Z, Ren W.
CrossRef
Google scholar
|
[107] |
Mezzomo L, Ferrara C, Brugnetti G.
CrossRef
Google scholar
|
[108] |
Shi Y, Wen L, Zhou G.
CrossRef
Google scholar
|
[109] |
Song H, Jeon S Y, Jeong Y. Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir. Carbon, 2019, 147: 441–450
CrossRef
Google scholar
|
[110] |
Weng W, Sun Q, Zhang Y.
CrossRef
Google scholar
|
[111] |
Zhang T, Han S, Guo W.
CrossRef
Google scholar
|
[112] |
Zhong G, Yu J, Zhuang P.
CrossRef
Google scholar
|
[113] |
Gu T, Cao Z, Wei B. All-manganese-based binder-free stretchable lithium-ion batteries. Advanced Energy Materials, 2017, 7(18): 1700369
CrossRef
Google scholar
|
[114] |
Jung Y, Jeong Y C, Kim J H.
CrossRef
Google scholar
|
[115] |
Ren J, Zhang Y, Bai W.
CrossRef
Google scholar
|
[116] |
Liu T, Zhang M, Wang Y L.
CrossRef
Google scholar
|
[117] |
Wei D, Shen W, Xu T.
CrossRef
Google scholar
|
[118] |
Mu K W, Liu K X, Wang Z Y.
CrossRef
Google scholar
|
[119] |
Jiang X, Chen Y, Meng X.
CrossRef
Google scholar
|
[120] |
Liu Y, Zhang R, Wang J.
CrossRef
Google scholar
|
[121] |
Guo L, Zhao N, Li J.
CrossRef
Google scholar
|
[122] |
Zhang C X, Mei S L, Chen X H.
CrossRef
Google scholar
|
[123] |
Liu Z, Qin L, Cao X.
CrossRef
Google scholar
|
[124] |
Zhang X, Li Y, Lin Y.
CrossRef
Google scholar
|
[125] |
Bao Y, Zhang X, Zhang X.
CrossRef
Google scholar
|
[126] |
Fang X, Shen C, Ge M.
CrossRef
Google scholar
|
[127] |
Yang P, Xi X, Huang T.
CrossRef
Google scholar
|
[128] |
Wu H, Shevlin S A, Meng Q.
CrossRef
Google scholar
|
[129] |
Wu H, Meng Q, Yang Q.
CrossRef
Google scholar
|
[130] |
Wu S, Wu H, Zou M.
CrossRef
Google scholar
|
[131] |
Wang K, Luo S, Wu Y.
CrossRef
Google scholar
|
[132] |
Yuan W, Wang B, Wu H.
CrossRef
Google scholar
|
[133] |
Feng H, Tang L, Zeng G.
CrossRef
Google scholar
|
[134] |
Jiang L, Yuan X, Liang J.
CrossRef
Google scholar
|
[135] |
Kwon Y H, Woo S W, Jung H R.
CrossRef
Google scholar
|
[136] |
Ren J, Li L, Chen C.
CrossRef
Google scholar
|
[137] |
Sun C F, Zhu H, Baker E B III.
CrossRef
Google scholar
|
[138] |
Zhang Y, Bai W, Cheng X.
CrossRef
Google scholar
|
[139] |
Zhang X, Xu Z, Kong S.
CrossRef
Google scholar
|
[140] |
Ahmad Y, Colin M, Gervillie-Mouravieff C.
CrossRef
Google scholar
|
[141] |
Cheng X, Pan J, Zhao Y.
CrossRef
Google scholar
|
[142] |
Guo X, Chen R, Wu F. Use of thin film materials in flexible lithium-ion batteries. Journal of the Chinese Ceramic Society, 2019, 47(10): 1386–1395
|
[143] |
Chew S Y, Ng S H, Wang J.
CrossRef
Google scholar
|
[144] |
Kim S D, Lee J G, Kim T G.
CrossRef
Google scholar
|
[145] |
Li F, Yue H, Yang Z.
CrossRef
Google scholar
|
[146] |
Guo W, Yan X, Hou F.
CrossRef
Google scholar
|
[147] |
Kang T, Ma Z, Zuo X.
CrossRef
Google scholar
|
[148] |
Fu J, Liu H, Liao L.
CrossRef
Google scholar
|
[149] |
Guo W, Si W, Zhang T.
CrossRef
Google scholar
|
[150] |
Cao H, Zhou X, Deng W.
CrossRef
Google scholar
|
[151] |
Han J H, Shin K H, Lee Y J. Scalable binder-free freestanding electrodes based on a cellulose acetate-assisted carbon nanotube fibrous network for practical flexible Li-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(5): 6375–6384
CrossRef
Google scholar
|
[152] |
Noerochim L, Wang J Z, Chou S L.
CrossRef
Google scholar
|
[153] |
Chen X, Tang H, Huang Z.
CrossRef
Google scholar
|
[154] |
Park S K, Seong C Y, Yoo S.
CrossRef
Google scholar
|
[155] |
Liu X, Zhang X, Ma S.
CrossRef
Google scholar
|
[156] |
Ji Z, Wang H, Chen Z.
CrossRef
Google scholar
|
[157] |
Zhao Y, Guo J. Development of flexible Li-ion batteries for flexible electronics. InfoMat, 2020, 2(5): 866–878
CrossRef
Google scholar
|
[158] |
Kammoun M, Berg S, Ardebili H. Stretchable spiral thin-film battery capable of out-of-plane deformation. Journal of Power Sources, 2016, 332: 406–412
CrossRef
Google scholar
|
[159] |
Hu J W, Wu Z P, Zhong S W.
CrossRef
Google scholar
|
[160] |
Tong X, Tian Z, Sun J.
CrossRef
Google scholar
|
[161] |
Ezeigwe E R, Dong L, Manjunatha R.
CrossRef
Google scholar
|
[162] |
Nam J, Jang W, Rajeev K K.
CrossRef
Google scholar
|
[163] |
Nam J, Kim E, Rajeev K K.
CrossRef
Google scholar
|
[164] |
Wang Y, Xu H, Chen X.
CrossRef
Google scholar
|
[165] |
Zhao Y, Zhang Y, Sun H.
CrossRef
Google scholar
|
[166] |
Rao J, Liu N, Zhang Z.
CrossRef
Google scholar
|
[167] |
Kuznetsov O A, Mohanty S, Pigos E.
CrossRef
Google scholar
|
/
〈 | 〉 |