Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells
Received date: 17 Aug 2023
Accepted date: 10 Oct 2023
Copyright
Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.
Cheng YUAN , Shiming ZHANG , Jiujun ZHANG . Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells[J]. Frontiers in Energy, 2024 , 18(2) : 206 -222 . DOI: 10.1007/s11708-023-0907-3
1 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294–303
|
2 |
Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments. Journal of Energy Storage, 2020, 27: 101047
|
3 |
Guo Y, Pan F, Chen W.
|
4 |
Zhao J, Liu H, Li X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2023, 6(1): 13
|
5 |
Tang M H, Zhang S M, Chen S L. Pt utilization in proton exchange membrane fuel cells: Structure impacting factors and mechanistic insights. Chemical Society Reviews, 2022, 51(4): 1529–1546
|
6 |
Du L, Prabhakaran V, Xie X H.
|
7 |
Zaman S, Huang L, Douka A I.
|
8 |
Yang Z L, Chen Y Z, Zhang S M.
|
9 |
Liu H, Zhao J, Li X. Controlled synthesis of carbon-supported Pt-based electrocatalysts for proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2022, 5(4): 13
|
10 |
Fan L, Deng H, Zhang Y.
|
11 |
Zhang S M, Chen M H, Zhao X.
|
12 |
Sinniah J D, Wong W Y, Loh K S.
|
13 |
Chen Y Z, Zhang S M, Chung-Yen Jung J.
|
14 |
Zhou M, Li C, Fang J Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chemical Reviews, 2021, 121(2): 736–795
|
15 |
WangKHuang J HChenH X,
|
16 |
Luo X, Guo Y, Zhou H.
|
17 |
Mistry H, Varela A S, Kühl S.
|
18 |
Kodama K, Nagai T, Kuwaki A.
|
19 |
Zhao X, Sun L Y, Cai J L.
|
20 |
Chen Y, Zhao X, Yan H.
|
21 |
Zhang J C, Yang H B, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Advanced Energy Materials, 2021, 11(3): 2002473
|
22 |
Zhan Q N, Shuai T Y, Xu H M.
|
23 |
Chen F, Jiang X Z, Zhang L L.
|
24 |
Li J, Yue M F, Wei Y M.
|
25 |
Katsounaros I, Schneider W B, Meier J C.
|
26 |
Keith J A, Jerkiewicz G, Jacob T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem, 2010, 11(13): 2779–2794
|
27 |
Ha Y, Kang S, Ham K.
|
28 |
Wei X, Luo X, Wu N.
|
29 |
Wei X, Song S, Wu N.
|
30 |
Wei X Q, Song S J, Cai W W.
|
31 |
Li J, Xia W, Tang J.
|
32 |
Jiang Z, Liu X, Liu X Z.
|
33 |
Zhao L, Wang S Q, Liang S.
|
34 |
Yuan L P, Tang T, Hu J S.
|
35 |
Ding L, Tang T, Hu J S. Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Physico-Chimica Sinica, 2021, 37(9): 2010048
|
36 |
Chen M, Chen Y, Yang Z.
|
37 |
Chen M, Chen Y, Cai J.
|
38 |
Chen M, Chen J, Jia C.
|
39 |
Yang Z, Yang H, Shang L.
|
40 |
Liu X, Liang J, Li Q. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis, 2023, 45: 17–26
|
41 |
Liang J, Liu X, Li Q. Principles, strategies, and approaches for designing highly durable platinum-based catalysts for proton exchange membrane fuel cells. Acta Physico-Chimica Sinica, 2021, 37(9): 2010072
|
42 |
Kwon G, Choi Y H, Lee H.
|
43 |
Zhang S M, Chen S L. Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction. Journal of Power Sources, 2013, 240: 60–65
|
44 |
Cai J L, Chen J X, Chen Y Z.
|
45 |
Gong L, Zhu J W, Xia F J.
|
46 |
Liao W, Zhou S Y, Wang Z C.
|
47 |
Lin Z J, Liu J Y, Li S Z.
|
48 |
Sui S, Wang X Y, Zhou X T.
|
49 |
Stamenkovic V, Mun B S, Mayrhofer K J J.
|
50 |
Greeley J, Stephens I, Bondarenko A.
|
51 |
Zhao Z, Chen C, Liu Z.
|
52 |
Tang H B, Su Y Q, Chi B.
|
53 |
Liao Y X, Li J, Zhang S M.
|
54 |
Zhang X, Wang S B, Wu C S.
|
55 |
Zhang B, Fu G, Li Y.
|
56 |
Yang C N, Li Z H, Ma C L.
|
57 |
Vej-Hansen U G, Rossmeisl J, Stephens I E L.
|
58 |
Hu Y, Jensen J O, Cleesmann L N.
|
59 |
Qian F R, Hu C S, Jiang W.
|
60 |
Wu Y J, Wang S X, Zhang M.
|
61 |
Zhang C L, Hwang S Y, Trout A.
|
62 |
Huang X Q, Zhao Z P, Cao L.
|
63 |
Zou L L, Fan J, Zhou Y.
|
64 |
Shen L L, Zhang G R, Miao S.
|
65 |
Liu J, Jiao M, Lu L.
|
66 |
Huang X, Wang J, Gao J.
|
67 |
Mitchell S, Perez-Ramirez J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nature Communications, 2020, 11(1): 4302
|
68 |
He Y, Li Y X, Zhang J F.
|
69 |
Ramesh R, Han S, Nandi D K.
|
70 |
Ding S P, Chen H A, Mekasuwandumrong O.
|
71 |
Chen Y J, Ji S F, Chen C.
|
72 |
Liu P X, Chen J, Zheng N F. Photochemical route for preparing atomically dispersed Pd1/TiO2 catalysts on (001)-exposed anatase nanocrystals and P25. Chinese Journal of Catalysis, 2017, 38(9): 1574–1580
|
73 |
Wang Z M, Gu L, Song L.
|
74 |
Xiong H, Datye A K, Wang Y. Thermally stable single-atom heterogeneous catalysts. Advanced Materials, 2021, 33(50): 2004319
|
75 |
Najam T, Shoaib Ahmad Shah S, Sufyan Javed M.
|
76 |
Kim J, Kim H E, Lee H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem, 2018, 11(1): 104–113
|
77 |
Dong Q, Mo Z Y, Wang H.
|
78 |
Chen Y, Ji S, Wang Y.
|
79 |
Zhang Z, Sun J, Wang F.
|
80 |
Lim T, Jung G Y, Kim J H.
|
81 |
Lim T, Kim J H, Kim J.
|
82 |
Song X Z, Li N, Zhang H.
|
83 |
Wang S, Wang G, Wu T.
|
84 |
Zhang S X, Li D H, Jiang J W.
|
85 |
Zhu X F, Tan X, Wu K H.
|
86 |
Cao L J, Wang X L, Yang C.
|
87 |
Zhong X W, Ye S L, Tang J.
|
88 |
Kang J, Wang M, Lu C.
|
89 |
Xiao F, Wang Q, Xu G L.
|
90 |
Zhao J, Fu C, Ye K.
|
91 |
Choi C H, Kim M, Kwon H C.
|
92 |
Zhang Q, Qin X X, Duan-Mu F P.
|
93 |
Pei G X, Liu X Y, Wang A Q.
|
94 |
Miura H, Endo K, Ogawa R.
|
95 |
Chen W L, Gao W P, Tu P.
|
96 |
Liu B W, Feng R H, Busch M.
|
97 |
He D S, He D P, Wang J.
|
98 |
Zhang L, Liu H S, Liu S H.
|
99 |
Shen R G, Chen W X, Peng Q.
|
100 |
Mosallanezhad A, Wei C, Ahmadian Koudakan P.
|
101 |
Cheng X, Wang Y S, Lu Y.
|
102 |
Gao R, Wang J, Huang Z F.
|
103 |
Duc Le T, Ahemad M J, Kim D S.
|
104 |
Cheng Y F, Gong X Y, Tao S.
|
105 |
Zhang L Z, Fischer J M T A, Jia Y.
|
106 |
Duan S, Wang R M, Liu J Y. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 2018, 29(20): 204002
|
107 |
Lou Y, Liu J Y. CO oxidation on metal oxide supported single Pt atoms: The role of the support. Industrial & Engineering Chemistry Research, 2017, 56(24): 6916–6925
|
108 |
Zhuang J D, Ren S M, Zhu B W.
|
109 |
Shi Q R, Hwang S, Yang H P.
|
110 |
Lei Z, Cai W, Rao Y.
|
111 |
Feng J, Gao H, Zheng L.
|
112 |
Wang X, Zhang L, Bu Y.
|
113 |
Pan F P, Li B Y, Sarnello E.
|
114 |
Wang X, Bai L, Lu J.
|
115 |
Liu L Q, Li F F, Liu T T.
|
116 |
O’Connor N J, Jonayat A S M, Janik M J.
|
117 |
Itoi H, Nishihara H, Kobayashi S.
|
118 |
Gao Y X, Yan D X, Wang C Q.
|
119 |
Lim D H, Wilcox J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. Journal of Physical Chemistry C, 2012, 116(5): 3653–3660
|
120 |
Liu J, Jiao M, Mei B.
|
121 |
Wang Y, Mao J, Meng X G.
|
122 |
Guo J, Gadipeli S, Yang Y.
|
123 |
Liu J, Bak J, Roh J H.
|
124 |
Yang Z, Xiang M, Zhu Y F.
|
125 |
Zeng X, Shui J, Liu X.
|
126 |
Han B, Guo Y, Huang Y.
|
127 |
Yang Z, Chen C, Zhao Y.
|
128 |
Kakinuma K, Wakasugi Y, Uchida M.
|
129 |
Yang S, Tak Y J, Kim J.
|
130 |
Jiang Y Y, Ni P J, Chen C X.
|
131 |
Lai W H, Zhang L F, Yan Z C.
|
/
〈 |
|
〉 |