Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells
Cheng YUAN, Shiming ZHANG, Jiujun ZHANG
Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells
Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.
oxygen reduction electrocatalysis / Pt single-atom catalysts / conventional Pt-based catalysts / design thoughts and synthesis / metal-support interactions
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294–303
CrossRef
Google scholar
|
[2] |
Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments. Journal of Energy Storage, 2020, 27: 101047
CrossRef
Google scholar
|
[3] |
Guo Y, Pan F, Chen W.
CrossRef
Google scholar
|
[4] |
Zhao J, Liu H, Li X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2023, 6(1): 13
CrossRef
Google scholar
|
[5] |
Tang M H, Zhang S M, Chen S L. Pt utilization in proton exchange membrane fuel cells: Structure impacting factors and mechanistic insights. Chemical Society Reviews, 2022, 51(4): 1529–1546
CrossRef
Google scholar
|
[6] |
Du L, Prabhakaran V, Xie X H.
CrossRef
Google scholar
|
[7] |
Zaman S, Huang L, Douka A I.
CrossRef
Google scholar
|
[8] |
Yang Z L, Chen Y Z, Zhang S M.
CrossRef
Google scholar
|
[9] |
Liu H, Zhao J, Li X. Controlled synthesis of carbon-supported Pt-based electrocatalysts for proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2022, 5(4): 13
CrossRef
Google scholar
|
[10] |
Fan L, Deng H, Zhang Y.
CrossRef
Google scholar
|
[11] |
Zhang S M, Chen M H, Zhao X.
CrossRef
Google scholar
|
[12] |
Sinniah J D, Wong W Y, Loh K S.
CrossRef
Google scholar
|
[13] |
Chen Y Z, Zhang S M, Chung-Yen Jung J.
CrossRef
Google scholar
|
[14] |
Zhou M, Li C, Fang J Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chemical Reviews, 2021, 121(2): 736–795
CrossRef
Google scholar
|
[15] |
WangKHuang J HChenH X,
|
[16] |
Luo X, Guo Y, Zhou H.
CrossRef
Google scholar
|
[17] |
Mistry H, Varela A S, Kühl S.
CrossRef
Google scholar
|
[18] |
Kodama K, Nagai T, Kuwaki A.
CrossRef
Google scholar
|
[19] |
Zhao X, Sun L Y, Cai J L.
CrossRef
Google scholar
|
[20] |
Chen Y, Zhao X, Yan H.
CrossRef
Google scholar
|
[21] |
Zhang J C, Yang H B, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Advanced Energy Materials, 2021, 11(3): 2002473
CrossRef
Google scholar
|
[22] |
Zhan Q N, Shuai T Y, Xu H M.
CrossRef
Google scholar
|
[23] |
Chen F, Jiang X Z, Zhang L L.
CrossRef
Google scholar
|
[24] |
Li J, Yue M F, Wei Y M.
CrossRef
Google scholar
|
[25] |
Katsounaros I, Schneider W B, Meier J C.
CrossRef
Google scholar
|
[26] |
Keith J A, Jerkiewicz G, Jacob T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem, 2010, 11(13): 2779–2794
CrossRef
Google scholar
|
[27] |
Ha Y, Kang S, Ham K.
CrossRef
Google scholar
|
[28] |
Wei X, Luo X, Wu N.
CrossRef
Google scholar
|
[29] |
Wei X, Song S, Wu N.
CrossRef
Google scholar
|
[30] |
Wei X Q, Song S J, Cai W W.
CrossRef
Google scholar
|
[31] |
Li J, Xia W, Tang J.
CrossRef
Google scholar
|
[32] |
Jiang Z, Liu X, Liu X Z.
CrossRef
Google scholar
|
[33] |
Zhao L, Wang S Q, Liang S.
CrossRef
Google scholar
|
[34] |
Yuan L P, Tang T, Hu J S.
CrossRef
Google scholar
|
[35] |
Ding L, Tang T, Hu J S. Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Physico-Chimica Sinica, 2021, 37(9): 2010048
CrossRef
Google scholar
|
[36] |
Chen M, Chen Y, Yang Z.
CrossRef
Google scholar
|
[37] |
Chen M, Chen Y, Cai J.
CrossRef
Google scholar
|
[38] |
Chen M, Chen J, Jia C.
CrossRef
Google scholar
|
[39] |
Yang Z, Yang H, Shang L.
CrossRef
Google scholar
|
[40] |
Liu X, Liang J, Li Q. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis, 2023, 45: 17–26
CrossRef
Google scholar
|
[41] |
Liang J, Liu X, Li Q. Principles, strategies, and approaches for designing highly durable platinum-based catalysts for proton exchange membrane fuel cells. Acta Physico-Chimica Sinica, 2021, 37(9): 2010072
CrossRef
Google scholar
|
[42] |
Kwon G, Choi Y H, Lee H.
CrossRef
Google scholar
|
[43] |
Zhang S M, Chen S L. Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction. Journal of Power Sources, 2013, 240: 60–65
CrossRef
Google scholar
|
[44] |
Cai J L, Chen J X, Chen Y Z.
CrossRef
Google scholar
|
[45] |
Gong L, Zhu J W, Xia F J.
CrossRef
Google scholar
|
[46] |
Liao W, Zhou S Y, Wang Z C.
CrossRef
Google scholar
|
[47] |
Lin Z J, Liu J Y, Li S Z.
CrossRef
Google scholar
|
[48] |
Sui S, Wang X Y, Zhou X T.
CrossRef
Google scholar
|
[49] |
Stamenkovic V, Mun B S, Mayrhofer K J J.
CrossRef
Google scholar
|
[50] |
Greeley J, Stephens I, Bondarenko A.
CrossRef
Google scholar
|
[51] |
Zhao Z, Chen C, Liu Z.
CrossRef
Google scholar
|
[52] |
Tang H B, Su Y Q, Chi B.
CrossRef
Google scholar
|
[53] |
Liao Y X, Li J, Zhang S M.
CrossRef
Google scholar
|
[54] |
Zhang X, Wang S B, Wu C S.
CrossRef
Google scholar
|
[55] |
Zhang B, Fu G, Li Y.
CrossRef
Google scholar
|
[56] |
Yang C N, Li Z H, Ma C L.
CrossRef
Google scholar
|
[57] |
Vej-Hansen U G, Rossmeisl J, Stephens I E L.
CrossRef
Google scholar
|
[58] |
Hu Y, Jensen J O, Cleesmann L N.
CrossRef
Google scholar
|
[59] |
Qian F R, Hu C S, Jiang W.
CrossRef
Google scholar
|
[60] |
Wu Y J, Wang S X, Zhang M.
CrossRef
Google scholar
|
[61] |
Zhang C L, Hwang S Y, Trout A.
CrossRef
Google scholar
|
[62] |
Huang X Q, Zhao Z P, Cao L.
CrossRef
Google scholar
|
[63] |
Zou L L, Fan J, Zhou Y.
CrossRef
Google scholar
|
[64] |
Shen L L, Zhang G R, Miao S.
CrossRef
Google scholar
|
[65] |
Liu J, Jiao M, Lu L.
CrossRef
Google scholar
|
[66] |
Huang X, Wang J, Gao J.
CrossRef
Google scholar
|
[67] |
Mitchell S, Perez-Ramirez J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nature Communications, 2020, 11(1): 4302
CrossRef
Google scholar
|
[68] |
He Y, Li Y X, Zhang J F.
CrossRef
Google scholar
|
[69] |
Ramesh R, Han S, Nandi D K.
CrossRef
Google scholar
|
[70] |
Ding S P, Chen H A, Mekasuwandumrong O.
CrossRef
Google scholar
|
[71] |
Chen Y J, Ji S F, Chen C.
CrossRef
Google scholar
|
[72] |
Liu P X, Chen J, Zheng N F. Photochemical route for preparing atomically dispersed Pd1/TiO2 catalysts on (001)-exposed anatase nanocrystals and P25. Chinese Journal of Catalysis, 2017, 38(9): 1574–1580
CrossRef
Google scholar
|
[73] |
Wang Z M, Gu L, Song L.
CrossRef
Google scholar
|
[74] |
Xiong H, Datye A K, Wang Y. Thermally stable single-atom heterogeneous catalysts. Advanced Materials, 2021, 33(50): 2004319
CrossRef
Google scholar
|
[75] |
Najam T, Shoaib Ahmad Shah S, Sufyan Javed M.
CrossRef
Google scholar
|
[76] |
Kim J, Kim H E, Lee H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem, 2018, 11(1): 104–113
CrossRef
Google scholar
|
[77] |
Dong Q, Mo Z Y, Wang H.
CrossRef
Google scholar
|
[78] |
Chen Y, Ji S, Wang Y.
CrossRef
Google scholar
|
[79] |
Zhang Z, Sun J, Wang F.
CrossRef
Google scholar
|
[80] |
Lim T, Jung G Y, Kim J H.
CrossRef
Google scholar
|
[81] |
Lim T, Kim J H, Kim J.
CrossRef
Google scholar
|
[82] |
Song X Z, Li N, Zhang H.
CrossRef
Google scholar
|
[83] |
Wang S, Wang G, Wu T.
CrossRef
Google scholar
|
[84] |
Zhang S X, Li D H, Jiang J W.
CrossRef
Google scholar
|
[85] |
Zhu X F, Tan X, Wu K H.
CrossRef
Google scholar
|
[86] |
Cao L J, Wang X L, Yang C.
CrossRef
Google scholar
|
[87] |
Zhong X W, Ye S L, Tang J.
CrossRef
Google scholar
|
[88] |
Kang J, Wang M, Lu C.
CrossRef
Google scholar
|
[89] |
Xiao F, Wang Q, Xu G L.
CrossRef
Google scholar
|
[90] |
Zhao J, Fu C, Ye K.
CrossRef
Google scholar
|
[91] |
Choi C H, Kim M, Kwon H C.
CrossRef
Google scholar
|
[92] |
Zhang Q, Qin X X, Duan-Mu F P.
CrossRef
Google scholar
|
[93] |
Pei G X, Liu X Y, Wang A Q.
CrossRef
Google scholar
|
[94] |
Miura H, Endo K, Ogawa R.
CrossRef
Google scholar
|
[95] |
Chen W L, Gao W P, Tu P.
CrossRef
Google scholar
|
[96] |
Liu B W, Feng R H, Busch M.
CrossRef
Google scholar
|
[97] |
He D S, He D P, Wang J.
CrossRef
Google scholar
|
[98] |
Zhang L, Liu H S, Liu S H.
CrossRef
Google scholar
|
[99] |
Shen R G, Chen W X, Peng Q.
CrossRef
Google scholar
|
[100] |
Mosallanezhad A, Wei C, Ahmadian Koudakan P.
CrossRef
Google scholar
|
[101] |
Cheng X, Wang Y S, Lu Y.
CrossRef
Google scholar
|
[102] |
Gao R, Wang J, Huang Z F.
CrossRef
Google scholar
|
[103] |
Duc Le T, Ahemad M J, Kim D S.
CrossRef
Google scholar
|
[104] |
Cheng Y F, Gong X Y, Tao S.
CrossRef
Google scholar
|
[105] |
Zhang L Z, Fischer J M T A, Jia Y.
CrossRef
Google scholar
|
[106] |
Duan S, Wang R M, Liu J Y. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 2018, 29(20): 204002
CrossRef
Google scholar
|
[107] |
Lou Y, Liu J Y. CO oxidation on metal oxide supported single Pt atoms: The role of the support. Industrial & Engineering Chemistry Research, 2017, 56(24): 6916–6925
CrossRef
Google scholar
|
[108] |
Zhuang J D, Ren S M, Zhu B W.
CrossRef
Google scholar
|
[109] |
Shi Q R, Hwang S, Yang H P.
CrossRef
Google scholar
|
[110] |
Lei Z, Cai W, Rao Y.
CrossRef
Google scholar
|
[111] |
Feng J, Gao H, Zheng L.
CrossRef
Google scholar
|
[112] |
Wang X, Zhang L, Bu Y.
CrossRef
Google scholar
|
[113] |
Pan F P, Li B Y, Sarnello E.
CrossRef
Google scholar
|
[114] |
Wang X, Bai L, Lu J.
CrossRef
Google scholar
|
[115] |
Liu L Q, Li F F, Liu T T.
CrossRef
Google scholar
|
[116] |
O’Connor N J, Jonayat A S M, Janik M J.
CrossRef
Google scholar
|
[117] |
Itoi H, Nishihara H, Kobayashi S.
CrossRef
Google scholar
|
[118] |
Gao Y X, Yan D X, Wang C Q.
CrossRef
Google scholar
|
[119] |
Lim D H, Wilcox J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. Journal of Physical Chemistry C, 2012, 116(5): 3653–3660
CrossRef
Google scholar
|
[120] |
Liu J, Jiao M, Mei B.
CrossRef
Google scholar
|
[121] |
Wang Y, Mao J, Meng X G.
CrossRef
Google scholar
|
[122] |
Guo J, Gadipeli S, Yang Y.
CrossRef
Google scholar
|
[123] |
Liu J, Bak J, Roh J H.
CrossRef
Google scholar
|
[124] |
Yang Z, Xiang M, Zhu Y F.
CrossRef
Google scholar
|
[125] |
Zeng X, Shui J, Liu X.
CrossRef
Google scholar
|
[126] |
Han B, Guo Y, Huang Y.
CrossRef
Google scholar
|
[127] |
Yang Z, Chen C, Zhao Y.
CrossRef
Google scholar
|
[128] |
Kakinuma K, Wakasugi Y, Uchida M.
CrossRef
Google scholar
|
[129] |
Yang S, Tak Y J, Kim J.
CrossRef
Google scholar
|
[130] |
Jiang Y Y, Ni P J, Chen C X.
CrossRef
Google scholar
|
[131] |
Lai W H, Zhang L F, Yan Z C.
CrossRef
Google scholar
|
/
〈 | 〉 |