Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis
Received date: 16 Aug 2023
Accepted date: 10 Oct 2023
Published date: 15 Apr 2024
Copyright
The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction ( RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.
Junwen CAO , Yikun HU , Yun ZHENG , Wenqiang ZHANG , Bo YU . Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis[J]. Frontiers in Energy, 2024 , 18(2) : 128 -140 . DOI: 10.1007/s11708-023-0908-2
1 |
Chen J G, Crooks R M, Seefeldt L C.
|
2 |
Gilbert N. African agriculture: Dirt poor. Nature, 2012, 483(7391): 525–527
|
3 |
Suryanto B H R, Du H, Wang D.
|
4 |
Wang L, Xia M, Wang H.
|
5 |
Qing G, Ghazfar R, Jackowski S T.
|
6 |
Zhan C, Nichols J A, Dixon D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. Journal of Physical Chemistry A, 2003, 107(20): 4184–4195
|
7 |
Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
|
8 |
Shilov A E. Catalytic reduction of molecular nitrogen in solutions. Russian Chemical Bulletin, International Edition, 2003, 12(52): 2555–2562
|
9 |
Foster S L, Bakovic S I P, Duda R D.
|
10 |
Nagaoka K, Eboshi T, Takeishi Y.
|
11 |
van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
|
12 |
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
|
13 |
Wang K, Smith D, Zheng Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective. Carbon Resources Conversion, 2018, 1(1): 2–31
|
14 |
Erisman J W, Sutton M A, Galloway J.
|
15 |
Guo W, Zhang K, Liang Z.
|
16 |
Wang J, Cai C, Wang Y.
|
17 |
Badea G E. Electrocatalytic reduction of nitrate on copper electrode in alkaline solution. Electrochimica Acta, 2009, 54(3): 996–1001
|
18 |
Wang Y, Zhou W, Jia R.
|
19 |
MacFarlane D R, Cherepanov P V, Choi J.
|
20 |
Martín A J, Shinagawa T, Pérez-Ramírez J.
|
21 |
Chen W, Yang X, Chen Z.
|
22 |
Liu Q, Xu T, Luo Y.
|
23 |
Ouyang L, Liang J, Luo Y.
|
24 |
Liang J, Li Z, Zhang L.
|
25 |
Song W, Yue L, Fan X.
|
26 |
Ma X, Liu J, Xiao H.
|
27 |
Honkala K, Hellman A, Remediakis I N.
|
28 |
Wang S, Ichihara F, Pang H.
|
29 |
Imamura K, Kubota J. Electrochemical membrane cell for NH3 synthesis from N2 and H2O by electrolysis at 200 to 250 °C using a Ru catalyst, hydrogen-permeable Pd membrane and phosphate-based electrolyte. Sustainable Energy & Fuels, 2018, 2(6): 1278–1286
|
30 |
Kyriakou V, Garagounis I, Vasileiou E.
|
31 |
Kim K, Kim J, Yoon H C.
|
32 |
Licht S, Cui B, Wang B.
|
33 |
Ma X, Li M, Lu J.
|
34 |
LvZLiZ LiuH,
|
35 |
Xu T, Ma B, Liang J.
|
36 |
Lan R, Irvine J T S, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 2013, 3(1): 1145
|
37 |
Zhang X, Wang Y, Liu C.
|
38 |
Shahid M, Javed H M A, Ahmad M I.
|
39 |
Yang X, Mukherjee S, O’Carroll T.
|
40 |
Utomo W P, Wu H, Ng Y H. Modulating the active sites of oxygen-deficient TiO2 by copper loading for enhanced electrocatalytic nitrogen reduction to ammonia. Small, 2022, 18(25): 2270131
|
41 |
Tian Y, Liu Y, Wang H.
|
42 |
Paul S, Sarkar S, Adalder A.
|
43 |
Wang S, Huang X, Pei L.
|
44 |
Yang Y, Zhang W, Tan X.
|
45 |
Zhao X, Hu G, Chen G F.
|
46 |
Zhang M, Choi C, Huo R.
|
47 |
Ren T, Sheng Y, Wang M.
|
48 |
Iqbal M S, Yao Z, Ruan Y.
|
49 |
Basu J, Ganguly S. Electrocatalytic nitrogen reduction reaction (NRR), a probable alternative to Haber-Bosch process (HBP). Resonance, 2023, 28(2): 279–291
|
50 |
Wang D, Chen C, Wang S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Science China. Chemistry, 2023, 66(4): 1052–1072
|
51 |
Tao L, Huang L, Pang K.
|
52 |
Yao Z, Liu S, Liu H.
|
53 |
Ali T, Muhammad N, Qian Y.
|
54 |
Hirakawa H, Hashimoto M, Shiraishi Y.
|
55 |
TugaoenH OGarcia-Segura SHristovskiK,
|
56 |
Garcia-Segura S, Lanzarini-Lopes M, Hristovski K.
|
57 |
Li J, Li H, Fan K.
|
58 |
Ren T, Sheng Y, Wang M.
|
59 |
Theerthagiri J, Park J, Das H T.
|
60 |
Chen G, Yuan Y, Jiang H.
|
61 |
Zheng Y, Wang J, Yu B.
|
62 |
Chen Q, Liang J, Liu Q.
|
63 |
Li C, Liu S, Xu Y.
|
64 |
Xue Y, Yu Q, Ma Q.
|
65 |
Fang L, Wang S, Song C.
|
66 |
Fang J, Fan J, Liu S.
|
67 |
Bai Z, Li X, Ding L.
|
68 |
Zhang S, Wu J, Zheng M.
|
69 |
Wang G, Zhang Y, Chen K.
|
70 |
Huang P, Fan T, Ma X.
|
71 |
Tao W, Wang P, Li H.
|
72 |
Wu X, Liu Z, Gao T.
|
73 |
Wang Y, Wang C, Li M.
|
74 |
Niu H, Zhang Z, Wang X.
|
75 |
Fichter F, Girard P, Erlenmeyer H. An electrolyte formed by compressed nitrogen at normal temperature. Helvetica Chimica Acta, 1930, 13(6): 1228–1236 (in German)
|
76 |
Tsuneto A, Kudo A, Sakata T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chemistry Letters, 1993, 22(5): 851–854
|
77 |
Tsuneto A, Kudo A, Sakata T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1–2): 183–188
|
78 |
Lazouski N, Schiffer Z J, Williams K.
|
79 |
IqbalM SRuan YIftikharR,
|
80 |
McEnaney J M, Singh A R, Schwalbe J A.
|
81 |
Li S, Zhou Y, Li K.
|
82 |
Fu X, Pedersen J B, Zhou Y.
|
83 |
Suryanto B H, Matuszek K, Choi J.
|
84 |
Cai X, Fu C, Iriawan H.
|
85 |
Zheng Y, Wang J, Yu B.
|
86 |
Zheng Y, Chen Z, Zhang J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochemical Energy Reviews, 2021, 4(3): 508–517
|
87 |
Yoo C, Park J H, Kim K.
|
88 |
Zhang S, Duan G, Qiao L.
|
89 |
Song Y, Chen J, Yang M.
|
90 |
Amar I A, Lan R, Humphreys J.
|
91 |
Klinsrisuk S, Irvine J T S. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3−δ electrolyte membrane. Catalysis Today, 2017, 286: 41–50
|
92 |
Wang K, Chen H, Li S.
|
93 |
Wang F, Wang Y, Li L.
|
94 |
Ferree M, Gunduz S, Kim J.
|
95 |
Ye L, Duan X, Xie K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750
|
96 |
Song Y, Lin L, Feng W.
|
97 |
Chen W, Yang X, Chen Z.
|
98 |
An L, Narouz M R, Smith P T.
|
99 |
Yin Q, Hu S, Liu J.
|
100 |
Jia R, Wang Y, Wang C.
|
101 |
Liu Q, Xie L, Liang J.
|
102 |
Fan X, Zhao D, Deng Z.
|
103 |
Zhang S, Wu J, Zheng M.
|
104 |
Blommaert M A, Aili D, Tufa R A.
|
105 |
Wan L, Xu Z, Xu Q.
|
106 |
Xu Z, Liao Y, Pang M.
|
107 |
Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 2013, 38(34): 14576–14594
|
/
〈 | 〉 |