Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis
Junwen CAO, Yikun HU, Yun ZHENG, Wenqiang ZHANG, Bo YU
Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis
The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction ( RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.
electrochemical ammonia synthesis / nitrogen / nitrate / nitrogen reduction reaction (NRR) to ammonia / nitrate reduction reaction (NO–3 RR)
[1] |
Chen J G, Crooks R M, Seefeldt L C.
CrossRef
Google scholar
|
[2] |
Gilbert N. African agriculture: Dirt poor. Nature, 2012, 483(7391): 525–527
CrossRef
Google scholar
|
[3] |
Suryanto B H R, Du H, Wang D.
CrossRef
Google scholar
|
[4] |
Wang L, Xia M, Wang H.
CrossRef
Google scholar
|
[5] |
Qing G, Ghazfar R, Jackowski S T.
CrossRef
Google scholar
|
[6] |
Zhan C, Nichols J A, Dixon D A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. Journal of Physical Chemistry A, 2003, 107(20): 4184–4195
CrossRef
Google scholar
|
[7] |
Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
CrossRef
Google scholar
|
[8] |
Shilov A E. Catalytic reduction of molecular nitrogen in solutions. Russian Chemical Bulletin, International Edition, 2003, 12(52): 2555–2562
|
[9] |
Foster S L, Bakovic S I P, Duda R D.
CrossRef
Google scholar
|
[10] |
Nagaoka K, Eboshi T, Takeishi Y.
CrossRef
Google scholar
|
[11] |
van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
CrossRef
Google scholar
|
[12] |
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
CrossRef
Google scholar
|
[13] |
Wang K, Smith D, Zheng Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective. Carbon Resources Conversion, 2018, 1(1): 2–31
CrossRef
Google scholar
|
[14] |
Erisman J W, Sutton M A, Galloway J.
CrossRef
Google scholar
|
[15] |
Guo W, Zhang K, Liang Z.
CrossRef
Google scholar
|
[16] |
Wang J, Cai C, Wang Y.
CrossRef
Google scholar
|
[17] |
Badea G E. Electrocatalytic reduction of nitrate on copper electrode in alkaline solution. Electrochimica Acta, 2009, 54(3): 996–1001
CrossRef
Google scholar
|
[18] |
Wang Y, Zhou W, Jia R.
CrossRef
Google scholar
|
[19] |
MacFarlane D R, Cherepanov P V, Choi J.
CrossRef
Google scholar
|
[20] |
Martín A J, Shinagawa T, Pérez-Ramírez J.
CrossRef
Google scholar
|
[21] |
Chen W, Yang X, Chen Z.
CrossRef
Google scholar
|
[22] |
Liu Q, Xu T, Luo Y.
CrossRef
Google scholar
|
[23] |
Ouyang L, Liang J, Luo Y.
CrossRef
Google scholar
|
[24] |
Liang J, Li Z, Zhang L.
CrossRef
Google scholar
|
[25] |
Song W, Yue L, Fan X.
CrossRef
Google scholar
|
[26] |
Ma X, Liu J, Xiao H.
CrossRef
Google scholar
|
[27] |
Honkala K, Hellman A, Remediakis I N.
CrossRef
Google scholar
|
[28] |
Wang S, Ichihara F, Pang H.
CrossRef
Google scholar
|
[29] |
Imamura K, Kubota J. Electrochemical membrane cell for NH3 synthesis from N2 and H2O by electrolysis at 200 to 250 °C using a Ru catalyst, hydrogen-permeable Pd membrane and phosphate-based electrolyte. Sustainable Energy & Fuels, 2018, 2(6): 1278–1286
CrossRef
Google scholar
|
[30] |
Kyriakou V, Garagounis I, Vasileiou E.
CrossRef
Google scholar
|
[31] |
Kim K, Kim J, Yoon H C.
CrossRef
Google scholar
|
[32] |
Licht S, Cui B, Wang B.
|
[33] |
Ma X, Li M, Lu J.
|
[34] |
LvZLiZ LiuH,
|
[35] |
Xu T, Ma B, Liang J.
CrossRef
Google scholar
|
[36] |
Lan R, Irvine J T S, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 2013, 3(1): 1145
CrossRef
Google scholar
|
[37] |
Zhang X, Wang Y, Liu C.
CrossRef
Google scholar
|
[38] |
Shahid M, Javed H M A, Ahmad M I.
CrossRef
Google scholar
|
[39] |
Yang X, Mukherjee S, O’Carroll T.
|
[40] |
Utomo W P, Wu H, Ng Y H. Modulating the active sites of oxygen-deficient TiO2 by copper loading for enhanced electrocatalytic nitrogen reduction to ammonia. Small, 2022, 18(25): 2270131
CrossRef
Google scholar
|
[41] |
Tian Y, Liu Y, Wang H.
CrossRef
Google scholar
|
[42] |
Paul S, Sarkar S, Adalder A.
CrossRef
Google scholar
|
[43] |
Wang S, Huang X, Pei L.
CrossRef
Google scholar
|
[44] |
Yang Y, Zhang W, Tan X.
CrossRef
Google scholar
|
[45] |
Zhao X, Hu G, Chen G F.
CrossRef
Google scholar
|
[46] |
Zhang M, Choi C, Huo R.
CrossRef
Google scholar
|
[47] |
Ren T, Sheng Y, Wang M.
|
[48] |
Iqbal M S, Yao Z, Ruan Y.
CrossRef
Google scholar
|
[49] |
Basu J, Ganguly S. Electrocatalytic nitrogen reduction reaction (NRR), a probable alternative to Haber-Bosch process (HBP). Resonance, 2023, 28(2): 279–291
CrossRef
Google scholar
|
[50] |
Wang D, Chen C, Wang S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Science China. Chemistry, 2023, 66(4): 1052–1072
CrossRef
Google scholar
|
[51] |
Tao L, Huang L, Pang K.
CrossRef
Google scholar
|
[52] |
Yao Z, Liu S, Liu H.
CrossRef
Google scholar
|
[53] |
Ali T, Muhammad N, Qian Y.
CrossRef
Google scholar
|
[54] |
Hirakawa H, Hashimoto M, Shiraishi Y.
CrossRef
Google scholar
|
[55] |
TugaoenH OGarcia-Segura SHristovskiK,
|
[56] |
Garcia-Segura S, Lanzarini-Lopes M, Hristovski K.
CrossRef
Google scholar
|
[57] |
Li J, Li H, Fan K.
CrossRef
Google scholar
|
[58] |
Ren T, Sheng Y, Wang M.
|
[59] |
Theerthagiri J, Park J, Das H T.
CrossRef
Google scholar
|
[60] |
Chen G, Yuan Y, Jiang H.
CrossRef
Google scholar
|
[61] |
Zheng Y, Wang J, Yu B.
CrossRef
Google scholar
|
[62] |
Chen Q, Liang J, Liu Q.
CrossRef
Google scholar
|
[63] |
Li C, Liu S, Xu Y.
CrossRef
Google scholar
|
[64] |
Xue Y, Yu Q, Ma Q.
CrossRef
Google scholar
|
[65] |
Fang L, Wang S, Song C.
CrossRef
Google scholar
|
[66] |
Fang J, Fan J, Liu S.
CrossRef
Google scholar
|
[67] |
Bai Z, Li X, Ding L.
CrossRef
Google scholar
|
[68] |
Zhang S, Wu J, Zheng M.
CrossRef
Google scholar
|
[69] |
Wang G, Zhang Y, Chen K.
CrossRef
Google scholar
|
[70] |
Huang P, Fan T, Ma X.
CrossRef
Google scholar
|
[71] |
Tao W, Wang P, Li H.
CrossRef
Google scholar
|
[72] |
Wu X, Liu Z, Gao T.
CrossRef
Google scholar
|
[73] |
Wang Y, Wang C, Li M.
CrossRef
Google scholar
|
[74] |
Niu H, Zhang Z, Wang X.
CrossRef
Google scholar
|
[75] |
Fichter F, Girard P, Erlenmeyer H. An electrolyte formed by compressed nitrogen at normal temperature. Helvetica Chimica Acta, 1930, 13(6): 1228–1236 (in German)
CrossRef
Google scholar
|
[76] |
Tsuneto A, Kudo A, Sakata T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chemistry Letters, 1993, 22(5): 851–854
CrossRef
Google scholar
|
[77] |
Tsuneto A, Kudo A, Sakata T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1–2): 183–188
CrossRef
Google scholar
|
[78] |
Lazouski N, Schiffer Z J, Williams K.
CrossRef
Google scholar
|
[79] |
IqbalM SRuan YIftikharR,
|
[80] |
McEnaney J M, Singh A R, Schwalbe J A.
CrossRef
Google scholar
|
[81] |
Li S, Zhou Y, Li K.
CrossRef
Google scholar
|
[82] |
Fu X, Pedersen J B, Zhou Y.
CrossRef
Google scholar
|
[83] |
Suryanto B H, Matuszek K, Choi J.
CrossRef
Google scholar
|
[84] |
Cai X, Fu C, Iriawan H.
CrossRef
Google scholar
|
[85] |
Zheng Y, Wang J, Yu B.
CrossRef
Google scholar
|
[86] |
Zheng Y, Chen Z, Zhang J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochemical Energy Reviews, 2021, 4(3): 508–517
CrossRef
Google scholar
|
[87] |
Yoo C, Park J H, Kim K.
CrossRef
Google scholar
|
[88] |
Zhang S, Duan G, Qiao L.
CrossRef
Google scholar
|
[89] |
Song Y, Chen J, Yang M.
CrossRef
Google scholar
|
[90] |
Amar I A, Lan R, Humphreys J.
CrossRef
Google scholar
|
[91] |
Klinsrisuk S, Irvine J T S. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3−δ electrolyte membrane. Catalysis Today, 2017, 286: 41–50
CrossRef
Google scholar
|
[92] |
Wang K, Chen H, Li S.
CrossRef
Google scholar
|
[93] |
Wang F, Wang Y, Li L.
CrossRef
Google scholar
|
[94] |
Ferree M, Gunduz S, Kim J.
CrossRef
Google scholar
|
[95] |
Ye L, Duan X, Xie K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750
CrossRef
Google scholar
|
[96] |
Song Y, Lin L, Feng W.
CrossRef
Google scholar
|
[97] |
Chen W, Yang X, Chen Z.
CrossRef
Google scholar
|
[98] |
An L, Narouz M R, Smith P T.
|
[99] |
Yin Q, Hu S, Liu J.
CrossRef
Google scholar
|
[100] |
Jia R, Wang Y, Wang C.
CrossRef
Google scholar
|
[101] |
Liu Q, Xie L, Liang J.
CrossRef
Google scholar
|
[102] |
Fan X, Zhao D, Deng Z.
CrossRef
Google scholar
|
[103] |
Zhang S, Wu J, Zheng M.
CrossRef
Google scholar
|
[104] |
Blommaert M A, Aili D, Tufa R A.
CrossRef
Google scholar
|
[105] |
Wan L, Xu Z, Xu Q.
CrossRef
Google scholar
|
[106] |
Xu Z, Liao Y, Pang M.
CrossRef
Google scholar
|
[107] |
Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 2013, 38(34): 14576–14594
CrossRef
Google scholar
|
/
〈 | 〉 |