Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap
Received date: 20 Apr 2023
Accepted date: 28 Jul 2023
Published date: 15 Dec 2023
Copyright
A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.
Prabhakar YADAV , Kuldeep SAHAY , Malvika SRIVASTAVA , Arpit VERMA , Bal Chandra YADAV . Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap[J]. Frontiers in Energy, 2023 , 17(6) : 727 -750 . DOI: 10.1007/s11708-023-0896-2
1 |
Sultana A, Alam M M, Ghosh S K.
|
2 |
Zhang H, Zhang D, Wang Z.
|
3 |
Liu L, Guo X, Lee C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 2021, 88: 106304
|
4 |
Bhaduri A, Singh S, Tripathi R K.
|
5 |
Wang Z L, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro- /nanosystems. Angewandte Chemie International Edition, 2012, 51(47): 11700–11721
|
6 |
Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
|
7 |
Suh I Y, Kim Y J, Zhao P.
|
8 |
Li C, Guo H, Wu Z.
|
9 |
Pan M, Yuan C, Liang X.
|
10 |
Yang H, Fan F R, Xi Y.
|
11 |
Zhao Z, Lu Y, Mi Y.
|
12 |
Li T, Lu X M, Zhang M R.
|
13 |
Verma A, Chaudhary P, Tripathi R K.
|
14 |
Wang C, Liu Y, Qu X.
|
15 |
Wen Z, Guo H, Zi Y.
|
16 |
Singh S, Bhaduri A, Tripathi R K.
|
17 |
ZhangCWangZ L. Triboelectric nanogenerators. In: Huang Q, ed. Micro Electro Mechanical Systems. Singapore: Springer 2018
|
18 |
Singh A, Chauhan P, Verma A.
|
19 |
DhakarL. Triboelectric Devices for Power Generation and Self-powered Sensing Applications. Singapore: Springer, 2017
|
20 |
Verma A, Chaudhary P, Singh A.
|
21 |
Wang S, Xie Y, Niu S.
|
22 |
Xu W, Wong M C, Hao J. Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy, 2019, 55: 203–215
|
23 |
Hu S, Weber J, Chang S.
|
24 |
Wang C, Qu X, Zheng Q.
|
25 |
Verma A, Singh A, Chaudhary P.
|
26 |
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334
|
27 |
WangYYangYWangZ L. Triboelectric nanogenerators as flexible power sources. npj Flexible Electronics. 2017, 1(1): 10
|
28 |
Wu C, Wang A C, Ding W.
|
29 |
Mishra S, Supraja P, Haranath D.
|
30 |
Kaur A, Singh S, Sharma P.
|
31 |
Sharma A, Panwar V, Mondal B.
|
32 |
Kaur A, Gupta A, Ying C.
|
33 |
Verma A, Yadav B C. 2D/2D nanostructured system based on WO3/WS2 for acetone sensor and breath analyzer. ACS Applied Nano Materials, 2023, 6(7): 5493–5507
|
34 |
Su C X H, Low L W, Teng T T.
|
35 |
Liu Y, Mo J, Fu Q.
|
36 |
Li J, Shepelin N A, Sherrell P C.
|
37 |
Somkuwar V U, Kumar B. Influence of the fabric topology on the performance of a textile-based triboelectric nanogenerator for self-powered monitoring. ACS Applied Polymer Materials, 2023, 5(4): 2323–2335
|
38 |
Gautam C, Verma A, Chaudhary P.
|
39 |
Verma A, Chaudhary P, Tripathi R K.
|
40 |
Ahmed A, El-Kady M F, Hassan I.
|
41 |
Wu J, Wang X, Li H.
|
42 |
Tcho I W, Kim W G, Jeon S B.
|
43 |
HarperW. Contact and Frictional Electrification. Oxford: Oxford University Press, 1967
|
44 |
Liu C, Bard A J. Electrons on dielectrics and contact electrification. Chemical Physics Letters, 2009, 480(4–6): 145–156
|
45 |
Lacks D J, Mohan Sankaran R. Contact electrification of insulating materials. Journal of Physics. D, Applied Physics, 2011, 44(45): 453001
|
46 |
Robins E S, Lowell J, Rose-Innes A C. The role of surface ions in the contact electrification of insulators. Journal of Electrostatics, 1980, 8(2–3): 153–160
|
47 |
Lowell J, Rose-Innes A C. Contact electrification. Advances in Physics, 1980, 29(6): 947–1023
|
48 |
Wu J, Wang X, Li H.
|
49 |
Kim W G, Kim D W, Tcho I W.
|
50 |
Segall M D, Lindan P J D, Probert M J.
|
51 |
Lowell J. The electrification of polymers by metals. Journal of Physics. D, Applied Physics, 1976, 9(11): 1571–1585
|
52 |
Yoshida M, Ii N, Shimosaka A.
|
53 |
Hogue M D, Buhler C R, Calle C I.
|
54 |
Liu C, Bard A J. Electrostatic electrochemistry at insulators. Nature Materials, 2008, 7(6): 505–509
|
55 |
Dzhardimalieva G I, Yadav B C, Singh S.
|
56 |
Lai Y C, Wu H M, Lin H C.
|
57 |
Verma A, Chaudhary P, Tripathi R K.
|
58 |
Khatib M, Zohar O, Haick H. Self-healing soft sensors: From material design to implementation. Advanced Materials, 2021, 33(11): 2004190
|
59 |
Wang H, Ma X, Hao Y. Electronic devices for human-machine interfaces. Advanced Materials Interfaces, 2017, 4(4): 1600709
|
60 |
Tan Y J, Susanto G J, Anwar Ali H P.
|
61 |
Cao L N Y, Xu Z, Wang Z L. Application of triboelectric nanogenerator in fluid dynamics sensing: Past and future. Nanomaterials, 2022, 12(19): 3261
|
62 |
SuC CChenJ S. Self-healing polymeric materials. Key Engineering Materials, 2017: Trans Tech Publ
|
63 |
Narayan R, Laberty-Robert C, Pelta J.
|
64 |
Chaudhary K, Kandasubramanian B. Self-healing nanofibers for engineering applications. Industrial & Engineering Chemistry Research, 2022, 61(11): 3789–3816
|
65 |
Ghorbanpour Arani A, Miralaei N, Farazin A.
|
66 |
Singh A, Verma A, Yadav B C.
|
67 |
KausarA. Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications. Woodhead Publishing, 2022
|
68 |
Toohey K S, Sottos N R, Lewis J A.
|
69 |
Invernizzi M, Turri S, Levi M.
|
70 |
Xie T. Recent advances in polymer shape memory. Polymer, 2011, 52(22): 4985–5000
|
71 |
Xu J, Shi W, Pang W. Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer, 2006, 47(1): 457–465
|
72 |
Jiang J, Guan Q, Liu Y.
|
73 |
Ma C, Kim B, Kim S W.
|
74 |
Zhao D X, He B J, Johnson C.
|
75 |
Hinchet R, Yoon H J, Ryu H.
|
76 |
Chen Y, Pu X, Liu M.
|
77 |
Williams K A, Dreyer D R, Bielawski C W. The underlying chemistry of self-healing materials. MRS Bulletin, 2008, 33(8): 759–765
|
78 |
Aïssa B, Therriault D, Haddad E.
|
79 |
Sharma A, Chaudhary P, Verma A.
|
80 |
Guimard N K, Oehlenschlaeger K K, Zhou J.
|
81 |
TahirM NOchejeM UWojtkiewiczK,
|
82 |
Ferguson J B, Schultz B F, Rohatgi P K. Self-healing metals and metal matrix composites. Journal of the Minerals Metals & Materials Society, 2014, 66(6): 866–871
|
83 |
Chen D, Wang D, Yang Y.
|
84 |
Van Ostenburg D O, Montgomery D J. Charge transfer upon contact between metals and insulators. Textile Research Journal, 1958, 28(1): 22–31
|
85 |
Utrera-Barrios S, Verdejo R, López-Manchado M A.
|
86 |
Xu J, Zou Y, Nashalian A.
|
87 |
Wool R P, O’connor K M. A theory crack healing in polymers. Journal of Applied Physics, 1981, 52(10): 5953–5963
|
88 |
Ikura R, Park J, Osaki M.
|
89 |
Cheng M, Liu J, Liu Y.
|
90 |
Khosravi H, Naderi R, Ramezanzadeh B. Designing an epoxy composite coating having dual-barrier-active self-healing anti-corrosion functions using a multi-functional GO/PDA/MO nano-hybrid. Materials Today. Chemistry, 2023, 27: 101282
|
91 |
Zheng Z, Wu M, Yang L.
|
92 |
Cheng Y, Zhu W, Lu X.
|
93 |
Kanjwal M A, Al Ghaferi A. Hybrid nanofibers opportunities and frontiers—A review. Journal of Environmental Chemical Engineering, 2022, 10(6): 108850
|
94 |
Zhang C, Wang M, Jiang C.
|
95 |
Qi M, Yang R, Wang Z.
|
96 |
Lone S A, Lim K C, Kaswan K.
|
97 |
Vu D L, Ahn K K. Triboelectric enhancement of polyvinylidene fluoride membrane using magnetic nanoparticle for water-based energy harvesting. Polymers, 2022, 14(8): 1547
|
98 |
Bijender A. Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors. Sensors and Actuators. A, Physical, 2022, 344: 113770
|
99 |
Tian X, Guo Y, Zhang J.
|
100 |
Xie Y, Ma Q, Yue B.
|
101 |
Xie X, Fang Y, Lu C.
|
102 |
Radhakrishnan S, Joseph N, Vighnesh N.
|
103 |
Jud K, Kausch H H. Load transfer through chain molecules after interpenetration at interfaces. Polymer Bulletin, 1979, 1(10): 697–707
|
104 |
Wang P P, Lee S, Harmon J P. Ethanol-induced crack healing in poly(methyl methacrylate). Journal of Polymer Science. Part B, Polymer Physics, 1994, 32(7): 1217–1227
|
105 |
Yang Y, Urban M W. Self-healing polymeric materials. Chemical Society Reviews, 2013, 42(17): 7446–7467
|
106 |
Zhu J, Cheng Y, Hao S.
|
107 |
Huang L B, Dai X, Sun Z.
|
108 |
Sun F, Liu L, Liu T.
|
109 |
Jiang J, Guan Q, Liu Y.
|
110 |
Long Y, Chen Y, Liu Y.
|
111 |
Li G, Li L, Zhang P.
|
112 |
Guan Q, Lin G, Gong Y.
|
113 |
Xu W, Huang L B, Hao J. Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy, 2017, 40: 399–407
|
114 |
Du Y, Wang X, Dai X.
|
115 |
Zhao G, Zhang Y, Shi N.
|
116 |
Singh S, Tripathi R K, Gupta M K.
|
117 |
Yang D, Ni Y, Kong X.
|
118 |
Singh S, Yadav P, Gupta M K.
|
119 |
Luo J, Gao W, Wang Z L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Advanced Materials, 2021, 33(17): 2004178
|
120 |
Sarkar L, Kandala A B, Bonam S.
|
121 |
Wei Z, Ding L, Sun N.
|
122 |
Wang Q, Yu X, Wang J.
|
123 |
Elsanadidy E, Mosa I M, Luo D.
|
124 |
Qiu H, Wang H, Xu L.
|
125 |
Lee J H, Hinchet R, Kim S K.
|
126 |
Idumah C I, Odera S R. Recent advancement in self-healing graphene polymer nanocomposites, shape memory, and coating materials. Polymer-Plastics Technology and Materials, 2020, 59(11): 1167–1190
|
/
〈 | 〉 |