High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions
Received date: 26 Apr 2023
Accepted date: 26 Jun 2023
Published date: 15 Jun 2024
Copyright
High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.
Simiao SHA , Riyue GE , Ying LI , Julie M. CAIRNEY , Rongkun ZHENG , Sean LI , Bin LIU , Jiujun ZHANG , Wenxian LI . High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions[J]. Frontiers in Energy, 2024 , 18(3) : 265 -290 . DOI: 10.1007/s11708-023-0892-6
1 |
Tiwari J N, Harzandi A M, Ha M.
|
2 |
Liu M, Wang L, Zhao K.
|
3 |
Li L, Liu S, Zhan C.
|
4 |
Li W, Guo Z, Yang J.
|
5 |
LiYMd
|
6 |
Lei W, Suzuki N, Terashima C.
|
7 |
Jiang Z, Ye Z, Shangguan W.
|
8 |
Zhu J, Hu L, Zhao P.
|
9 |
Li L, Wang P, Shao Q.
|
10 |
Xu Y, Yang J, Liao T.
|
11 |
Ali A, Long F, Shen P K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochemical Energy Reviews, 2022, 5(4): 1
|
12 |
Tiwari J N, Sultan S, Myung C W.
|
13 |
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1(1): 0003
|
14 |
Yang L, Liu R, Jiao L. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Advanced Functional Materials, 2020, 30(14): 1909618
|
15 |
Li J, Ge R, Li Y.
|
16 |
Bai H, Chen D, Ma Q.
|
17 |
Ji S, Lai C, Zhou H.
|
18 |
Wu Z P, Lu X F, Zang S Q.
|
19 |
Wang Z, Yang J, Wang W.
|
20 |
Jin Z, Lv J, Jia H.
|
21 |
Chen Z, Wen J, Wang C.
|
22 |
Yao Y, Dong Q, Brozena A.
|
23 |
Liu M, Zhang Z, Okejiri F.
|
24 |
Huo X, Yu H, Xing B.
|
25 |
Gao S, Hao S, Huang Z.
|
26 |
Pan Q, Zhang L, Feng R.
|
27 |
Huang K, Zhang B, Wu J.
|
28 |
Wu D, Kusada K, Yamamoto T.
|
29 |
Zhu G, Huang Z, Xu Z.
|
30 |
Xu X, Shao Z, Jiang S P. High-entropy materials for water electrolysis. Energy Technology, 2022, 10(11): 2200573
|
31 |
Feng D, Dong Y, Zhang L.
|
32 |
Shu Y, Bao J, Yang S.
|
33 |
Chen Z, Wu J, Chen Z.
|
34 |
Löffler T, Ludwig A, Rossmeisl J.
|
35 |
Li H, Han Y, Zhao H.
|
36 |
Xie C, Niu Z, Kim D.
|
37 |
Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Advanced Functional Materials, 2019, 29(3): 1806419
|
38 |
Jin T, Sang X, Unocic R R.
|
39 |
Li X, Zhou Y, Feng C.
|
40 |
Yao Y, Huang Z, Xie P.
|
41 |
Kang Y, Tang Y, Zhu L.
|
42 |
Kang Y, Henzie J, Gu H.
|
43 |
Li R, Liu X, Liu W.
|
44 |
Chen Z J, Zhang T, Gao X Y.
|
45 |
Chen H, Lin W, Zhang Z.
|
46 |
Wang J, Feng J, Li Y.
|
47 |
Tang L, Yang Y, Guo H.
|
48 |
Zhan C, Bu L, Sun H.
|
49 |
Sheelam A, Balu S, Muneeb A.
|
50 |
Yao Y, Liu Z, Xie P.
|
51 |
Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Computational Materials, 2019, 5(1): 70
|
52 |
Yeh J W, Chen S K, Lin S J.
|
53 |
Niu B, Zhang F, Ping H.
|
54 |
George E P, Raabe D, Ritchie R O. High-entropy alloys. Nature Reviews Materials, 2019, 4(8): 515–534
|
55 |
Jiang B, Yu Y, Cui J.
|
56 |
Ma Y, Ma Y, Wang Q.
|
57 |
Chang X, Zeng M, Liu K.
|
58 |
Zhai Y, Ren X, Wang B.
|
59 |
Song B, Yang Y, Rabbani M.
|
60 |
Li H, Lai J, Li Z.
|
61 |
Otto F, Yang Y, Bei H.
|
62 |
Li H, Zhu H, Zhang S.
|
63 |
Wang K, Huang J, Chen H.
|
64 |
Xin Y, Li S, Qian Y.
|
65 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys. Journal of the Minerals Metals & Materials Society, 2013, 65(12): 1759–1771
|
66 |
Zhang Y, Zuo T T, Tang Z.
|
67 |
Wang R, Tang Y, Li S.
|
68 |
Lee C, Chou Y, Kim G.
|
69 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013, 61(13): 4887–4897
|
70 |
Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, 120: 100754
|
71 |
Li S, Cong D, Chen Z.
|
72 |
Abdel-Karim A, El-Naggar M E, Radwan E K.
|
73 |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Current Science, 2003, 85(5): 1404–1406
|
74 |
Huang C L, Lin Y G, Chiang C L.
|
75 |
Liu Y, Chen G, Ge R.
|
76 |
Ma J, Xing F, Nakaya Y.
|
77 |
Yang C L, Wang L N, Yin P.
|
78 |
Tsai C F, Wu P W, Lin P.
|
79 |
Li S, Wang J, Lin X.
|
80 |
Xu H, Zhang Z, Liu J.
|
81 |
McCormick C R, Schaak R E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. Journal of the American Chemical Society, 2021, 143(2): 1017–1023
|
82 |
Sugiura N, Shimokata S, Watanabe H.
|
83 |
Fang G, Gao J, Lv J.
|
84 |
Jin Z, Lyu J, Zhao Y L.
|
85 |
Nie S, Wu L, Zhao L.
|
86 |
Al Bacha S, Pighin S A, Urretavizcaya G.
|
87 |
Friščić T, Mottillo C, Titi H M. Mechanochemistry for synthesis. Angewandte Chemie International Edition, 2020, 59(3): 1018–1029
|
88 |
Tang J, Xu J L, Ye Z G.
|
89 |
LinLDingZ KarkeraG,
|
90 |
Wang T, Fan J, Do-Thanh C L.
|
91 |
Feng G, Ning F, Song J.
|
92 |
Cai Z X, Goou H, Ito Y.
|
93 |
Lee Y H, Ren H, Wu E A.
|
94 |
Rausch M, Golizadeh M, Kreiml P.
|
95 |
Liu S, Li H, Zhong J.
|
96 |
Löffler T, Meyer H, Savan A.
|
97 |
Wang S, Xu B, Huo W.
|
98 |
Jiang H, Liu X, Zhu M N.
|
99 |
Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Physical Chemistry Chemical Physics, 2013, 15(9): 3027–3046
|
100 |
Ortega S, Ibáñez M, Liu Y.
|
101 |
Zhai Y, Ren X, Wang B.
|
102 |
Abdelhafiz A, Wang B, Harutyunyan A R.
|
103 |
Chen W, Luo S, Sun M.
|
104 |
Feng G, Ning F, Song J.
|
105 |
Xu H, Zhao Y, Wang Q.
|
106 |
Wang C, Shang H, Wang Y.
|
107 |
Fu X, Zhang J, Zhan S.
|
108 |
Tao L, Sun M, Zhou Y.
|
109 |
Li H, Sun M, Pan Y.
|
110 |
Yang C, Lu Y, Duan W.
|
111 |
Zhang B, Wang L, Cao Z.
|
112 |
Xu Z, Men X, Shan Y.
|
113 |
Mushiana T, Khan M, Abdullah M I.
|
114 |
LinLDingZ KarkeraG,
|
115 |
Jia Z, Yang T, Sun L.
|
116 |
Huang K, Xia J, Lu Y.
|
117 |
Wu D, Kusada K, Yamamoto T.
|
118 |
Mei Y, Feng Y, Zhang C.
|
119 |
Kwon J, Sun S, Choi S.
|
120 |
Falch A, Babu S P. A review and perspective on electrocatalysts containing Cr for alkaline water electrolysis: Hydrogen evolution reaction. Electrocatalysis (New York), 2021, 12(2): 104–116
|
121 |
Zhang Y, Yang J, Ge R.
|
122 |
Li J, Xu Y, Liang L.
|
123 |
Liu Y, Ge R, Chen Y.
|
124 |
Ge R, Huo J, Li Y.
|
125 |
Yu Z, Li Y, Qu J.
|
126 |
Song J, Wei C, Huang Z F.
|
127 |
Ding K, Cullen D A, Zhang L.
|
128 |
Ao X, Zhang W, Zhao B.
|
129 |
Ma Z, Cano Z P, Yu A.
|
130 |
Li T, Yao Y, Huang Z.
|
131 |
Liu S, Shen Y, Zhang Y.
|
132 |
Liu F, Shi C, Guo X.
|
133 |
Li Y, Zhu S, Xu Y.
|
134 |
Xu Y, Wang C, Huang Y.
|
135 |
Dubouis N, Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science (Cambridge), 2019, 10(40): 9165–9181
|
136 |
Mondal A, Vomiero A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2022, 32(52): 2208994
|
137 |
Kwon I S, Kwak I H, Zewdie G M.
|
138 |
Ge R, Zhao J, Huo J.
|
139 |
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7(20): eabg1600
|
140 |
Lin Z, Xiao B, Huang M.
|
141 |
Guo Y, Hou B, Cui X.
|
142 |
Chen F Y, Wu Z Y, Adler Z.
|
143 |
Sun Y, Zhang W, Zhang Q.
|
144 |
Nørskov J K, Bligaard T, Rossmeisl J.
|
145 |
Feng D, Dong Y, Nie P.
|
146 |
Jin H, Guo C, Liu X.
|
147 |
Xu Q, Chu M, Liu M.
|
148 |
Yu Z, Si C, Escobar-Bedia F J.
|
149 |
Hu Y, Luo G, Wang L.
|
150 |
Cheng Y, Guo H, Li X.
|
151 |
King L A, Hubert M A, Capuano C.
|
152 |
Wang S, Huo W, Fang F.
|
153 |
Mao H, Guo X, Fu Y.
|
154 |
Wang Q, Li J, Li Y.
|
155 |
Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nature Reviews. Materials, 2020, 5(4): 295–309
|
156 |
Sun W, Li J, Gao W.
|
157 |
Sun W, Wang Y, Liu S.
|
158 |
Hao M, Chen J, Chen J.
|
159 |
Li J, Guo M, Yang X.
|
160 |
Guo M, Li P, Wang A.
|
161 |
Seh Z W, Kibsgaard J, Dickens C F.
|
162 |
Plenge M K, Pedersen J K, Mints V A.
|
163 |
Ma S, Huang J, Zhang C.
|
164 |
Hao J, Zhuang Z, Cao K.
|
165 |
Lei Y, Zhang L, Xu W.
|
166 |
Yang S, Zhu J Y, Chen X N.
|
/
〈 | 〉 |