High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions
Simiao SHA, Riyue GE, Ying LI, Julie M. CAIRNEY, Rongkun ZHENG, Sean LI, Bin LIU, Jiujun ZHANG, Wenxian LI
High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions
High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.
high-entropy / electrocatalysis / synthetic methods / water-electrolysis / hydrogen and oxygen evolutions
[1] |
Tiwari J N, Harzandi A M, Ha M.
CrossRef
Google scholar
|
[2] |
Liu M, Wang L, Zhao K.
CrossRef
Google scholar
|
[3] |
Li L, Liu S, Zhan C.
CrossRef
Google scholar
|
[4] |
Li W, Guo Z, Yang J.
CrossRef
Google scholar
|
[5] |
LiYMd
|
[6] |
Lei W, Suzuki N, Terashima C.
CrossRef
Google scholar
|
[7] |
Jiang Z, Ye Z, Shangguan W.
CrossRef
Google scholar
|
[8] |
Zhu J, Hu L, Zhao P.
CrossRef
Google scholar
|
[9] |
Li L, Wang P, Shao Q.
CrossRef
Google scholar
|
[10] |
Xu Y, Yang J, Liao T.
CrossRef
Google scholar
|
[11] |
Ali A, Long F, Shen P K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochemical Energy Reviews, 2022, 5(4): 1
CrossRef
Google scholar
|
[12] |
Tiwari J N, Sultan S, Myung C W.
CrossRef
Google scholar
|
[13] |
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1(1): 0003
CrossRef
Google scholar
|
[14] |
Yang L, Liu R, Jiao L. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Advanced Functional Materials, 2020, 30(14): 1909618
CrossRef
Google scholar
|
[15] |
Li J, Ge R, Li Y.
CrossRef
Google scholar
|
[16] |
Bai H, Chen D, Ma Q.
CrossRef
Google scholar
|
[17] |
Ji S, Lai C, Zhou H.
CrossRef
Google scholar
|
[18] |
Wu Z P, Lu X F, Zang S Q.
CrossRef
Google scholar
|
[19] |
Wang Z, Yang J, Wang W.
CrossRef
Google scholar
|
[20] |
Jin Z, Lv J, Jia H.
CrossRef
Google scholar
|
[21] |
Chen Z, Wen J, Wang C.
CrossRef
Google scholar
|
[22] |
Yao Y, Dong Q, Brozena A.
CrossRef
Google scholar
|
[23] |
Liu M, Zhang Z, Okejiri F.
CrossRef
Google scholar
|
[24] |
Huo X, Yu H, Xing B.
CrossRef
Google scholar
|
[25] |
Gao S, Hao S, Huang Z.
CrossRef
Google scholar
|
[26] |
Pan Q, Zhang L, Feng R.
CrossRef
Google scholar
|
[27] |
Huang K, Zhang B, Wu J.
CrossRef
Google scholar
|
[28] |
Wu D, Kusada K, Yamamoto T.
CrossRef
Google scholar
|
[29] |
Zhu G, Huang Z, Xu Z.
CrossRef
Google scholar
|
[30] |
Xu X, Shao Z, Jiang S P. High-entropy materials for water electrolysis. Energy Technology, 2022, 10(11): 2200573
CrossRef
Google scholar
|
[31] |
Feng D, Dong Y, Zhang L.
CrossRef
Google scholar
|
[32] |
Shu Y, Bao J, Yang S.
CrossRef
Google scholar
|
[33] |
Chen Z, Wu J, Chen Z.
CrossRef
Google scholar
|
[34] |
Löffler T, Ludwig A, Rossmeisl J.
CrossRef
Google scholar
|
[35] |
Li H, Han Y, Zhao H.
CrossRef
Google scholar
|
[36] |
Xie C, Niu Z, Kim D.
CrossRef
Google scholar
|
[37] |
Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Advanced Functional Materials, 2019, 29(3): 1806419
CrossRef
Google scholar
|
[38] |
Jin T, Sang X, Unocic R R.
CrossRef
Google scholar
|
[39] |
Li X, Zhou Y, Feng C.
CrossRef
Google scholar
|
[40] |
Yao Y, Huang Z, Xie P.
CrossRef
Google scholar
|
[41] |
Kang Y, Tang Y, Zhu L.
CrossRef
Google scholar
|
[42] |
Kang Y, Henzie J, Gu H.
CrossRef
Google scholar
|
[43] |
Li R, Liu X, Liu W.
CrossRef
Google scholar
|
[44] |
Chen Z J, Zhang T, Gao X Y.
CrossRef
Google scholar
|
[45] |
Chen H, Lin W, Zhang Z.
CrossRef
Google scholar
|
[46] |
Wang J, Feng J, Li Y.
CrossRef
Google scholar
|
[47] |
Tang L, Yang Y, Guo H.
CrossRef
Google scholar
|
[48] |
Zhan C, Bu L, Sun H.
CrossRef
Google scholar
|
[49] |
Sheelam A, Balu S, Muneeb A.
CrossRef
Google scholar
|
[50] |
Yao Y, Liu Z, Xie P.
CrossRef
Google scholar
|
[51] |
Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Computational Materials, 2019, 5(1): 70
CrossRef
Google scholar
|
[52] |
Yeh J W, Chen S K, Lin S J.
CrossRef
Google scholar
|
[53] |
Niu B, Zhang F, Ping H.
CrossRef
Google scholar
|
[54] |
George E P, Raabe D, Ritchie R O. High-entropy alloys. Nature Reviews Materials, 2019, 4(8): 515–534
CrossRef
Google scholar
|
[55] |
Jiang B, Yu Y, Cui J.
CrossRef
Google scholar
|
[56] |
Ma Y, Ma Y, Wang Q.
CrossRef
Google scholar
|
[57] |
Chang X, Zeng M, Liu K.
CrossRef
Google scholar
|
[58] |
Zhai Y, Ren X, Wang B.
CrossRef
Google scholar
|
[59] |
Song B, Yang Y, Rabbani M.
CrossRef
Google scholar
|
[60] |
Li H, Lai J, Li Z.
CrossRef
Google scholar
|
[61] |
Otto F, Yang Y, Bei H.
CrossRef
Google scholar
|
[62] |
Li H, Zhu H, Zhang S.
CrossRef
Google scholar
|
[63] |
Wang K, Huang J, Chen H.
CrossRef
Google scholar
|
[64] |
Xin Y, Li S, Qian Y.
CrossRef
Google scholar
|
[65] |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys. Journal of the Minerals Metals & Materials Society, 2013, 65(12): 1759–1771
CrossRef
Google scholar
|
[66] |
Zhang Y, Zuo T T, Tang Z.
CrossRef
Google scholar
|
[67] |
Wang R, Tang Y, Li S.
CrossRef
Google scholar
|
[68] |
Lee C, Chou Y, Kim G.
CrossRef
Google scholar
|
[69] |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013, 61(13): 4887–4897
CrossRef
Google scholar
|
[70] |
Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, 120: 100754
CrossRef
Google scholar
|
[71] |
Li S, Cong D, Chen Z.
CrossRef
Google scholar
|
[72] |
Abdel-Karim A, El-Naggar M E, Radwan E K.
CrossRef
Google scholar
|
[73] |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Current Science, 2003, 85(5): 1404–1406
|
[74] |
Huang C L, Lin Y G, Chiang C L.
CrossRef
Google scholar
|
[75] |
Liu Y, Chen G, Ge R.
CrossRef
Google scholar
|
[76] |
Ma J, Xing F, Nakaya Y.
|
[77] |
Yang C L, Wang L N, Yin P.
CrossRef
Google scholar
|
[78] |
Tsai C F, Wu P W, Lin P.
CrossRef
Google scholar
|
[79] |
Li S, Wang J, Lin X.
CrossRef
Google scholar
|
[80] |
Xu H, Zhang Z, Liu J.
CrossRef
Google scholar
|
[81] |
McCormick C R, Schaak R E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. Journal of the American Chemical Society, 2021, 143(2): 1017–1023
CrossRef
Google scholar
|
[82] |
Sugiura N, Shimokata S, Watanabe H.
CrossRef
Google scholar
|
[83] |
Fang G, Gao J, Lv J.
CrossRef
Google scholar
|
[84] |
Jin Z, Lyu J, Zhao Y L.
CrossRef
Google scholar
|
[85] |
Nie S, Wu L, Zhao L.
CrossRef
Google scholar
|
[86] |
Al Bacha S, Pighin S A, Urretavizcaya G.
CrossRef
Google scholar
|
[87] |
Friščić T, Mottillo C, Titi H M. Mechanochemistry for synthesis. Angewandte Chemie International Edition, 2020, 59(3): 1018–1029
CrossRef
Google scholar
|
[88] |
Tang J, Xu J L, Ye Z G.
CrossRef
Google scholar
|
[89] |
LinLDingZ KarkeraG,
|
[90] |
Wang T, Fan J, Do-Thanh C L.
CrossRef
Google scholar
|
[91] |
Feng G, Ning F, Song J.
CrossRef
Google scholar
|
[92] |
Cai Z X, Goou H, Ito Y.
CrossRef
Google scholar
|
[93] |
Lee Y H, Ren H, Wu E A.
CrossRef
Google scholar
|
[94] |
Rausch M, Golizadeh M, Kreiml P.
CrossRef
Google scholar
|
[95] |
Liu S, Li H, Zhong J.
CrossRef
Google scholar
|
[96] |
Löffler T, Meyer H, Savan A.
CrossRef
Google scholar
|
[97] |
Wang S, Xu B, Huo W.
CrossRef
Google scholar
|
[98] |
Jiang H, Liu X, Zhu M N.
CrossRef
Google scholar
|
[99] |
Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Physical Chemistry Chemical Physics, 2013, 15(9): 3027–3046
CrossRef
Google scholar
|
[100] |
Ortega S, Ibáñez M, Liu Y.
CrossRef
Google scholar
|
[101] |
Zhai Y, Ren X, Wang B.
CrossRef
Google scholar
|
[102] |
Abdelhafiz A, Wang B, Harutyunyan A R.
CrossRef
Google scholar
|
[103] |
Chen W, Luo S, Sun M.
CrossRef
Google scholar
|
[104] |
Feng G, Ning F, Song J.
CrossRef
Google scholar
|
[105] |
Xu H, Zhao Y, Wang Q.
CrossRef
Google scholar
|
[106] |
Wang C, Shang H, Wang Y.
CrossRef
Google scholar
|
[107] |
Fu X, Zhang J, Zhan S.
CrossRef
Google scholar
|
[108] |
Tao L, Sun M, Zhou Y.
CrossRef
Google scholar
|
[109] |
Li H, Sun M, Pan Y.
CrossRef
Google scholar
|
[110] |
Yang C, Lu Y, Duan W.
CrossRef
Google scholar
|
[111] |
Zhang B, Wang L, Cao Z.
CrossRef
Google scholar
|
[112] |
Xu Z, Men X, Shan Y.
CrossRef
Google scholar
|
[113] |
Mushiana T, Khan M, Abdullah M I.
CrossRef
Google scholar
|
[114] |
LinLDingZ KarkeraG,
|
[115] |
Jia Z, Yang T, Sun L.
CrossRef
Google scholar
|
[116] |
Huang K, Xia J, Lu Y.
CrossRef
Google scholar
|
[117] |
Wu D, Kusada K, Yamamoto T.
CrossRef
Google scholar
|
[118] |
Mei Y, Feng Y, Zhang C.
CrossRef
Google scholar
|
[119] |
Kwon J, Sun S, Choi S.
CrossRef
Google scholar
|
[120] |
Falch A, Babu S P. A review and perspective on electrocatalysts containing Cr for alkaline water electrolysis: Hydrogen evolution reaction. Electrocatalysis (New York), 2021, 12(2): 104–116
CrossRef
Google scholar
|
[121] |
Zhang Y, Yang J, Ge R.
CrossRef
Google scholar
|
[122] |
Li J, Xu Y, Liang L.
CrossRef
Google scholar
|
[123] |
Liu Y, Ge R, Chen Y.
CrossRef
Google scholar
|
[124] |
Ge R, Huo J, Li Y.
CrossRef
Google scholar
|
[125] |
Yu Z, Li Y, Qu J.
CrossRef
Google scholar
|
[126] |
Song J, Wei C, Huang Z F.
CrossRef
Google scholar
|
[127] |
Ding K, Cullen D A, Zhang L.
CrossRef
Google scholar
|
[128] |
Ao X, Zhang W, Zhao B.
CrossRef
Google scholar
|
[129] |
Ma Z, Cano Z P, Yu A.
CrossRef
Google scholar
|
[130] |
Li T, Yao Y, Huang Z.
CrossRef
Google scholar
|
[131] |
Liu S, Shen Y, Zhang Y.
CrossRef
Google scholar
|
[132] |
Liu F, Shi C, Guo X.
CrossRef
Google scholar
|
[133] |
Li Y, Zhu S, Xu Y.
CrossRef
Google scholar
|
[134] |
Xu Y, Wang C, Huang Y.
CrossRef
Google scholar
|
[135] |
Dubouis N, Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science (Cambridge), 2019, 10(40): 9165–9181
CrossRef
Google scholar
|
[136] |
Mondal A, Vomiero A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2022, 32(52): 2208994
CrossRef
Google scholar
|
[137] |
Kwon I S, Kwak I H, Zewdie G M.
CrossRef
Google scholar
|
[138] |
Ge R, Zhao J, Huo J.
CrossRef
Google scholar
|
[139] |
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7(20): eabg1600
CrossRef
Google scholar
|
[140] |
Lin Z, Xiao B, Huang M.
CrossRef
Google scholar
|
[141] |
Guo Y, Hou B, Cui X.
CrossRef
Google scholar
|
[142] |
Chen F Y, Wu Z Y, Adler Z.
CrossRef
Google scholar
|
[143] |
Sun Y, Zhang W, Zhang Q.
CrossRef
Google scholar
|
[144] |
Nørskov J K, Bligaard T, Rossmeisl J.
CrossRef
Google scholar
|
[145] |
Feng D, Dong Y, Nie P.
CrossRef
Google scholar
|
[146] |
Jin H, Guo C, Liu X.
CrossRef
Google scholar
|
[147] |
Xu Q, Chu M, Liu M.
CrossRef
Google scholar
|
[148] |
Yu Z, Si C, Escobar-Bedia F J.
CrossRef
Google scholar
|
[149] |
Hu Y, Luo G, Wang L.
CrossRef
Google scholar
|
[150] |
Cheng Y, Guo H, Li X.
CrossRef
Google scholar
|
[151] |
King L A, Hubert M A, Capuano C.
CrossRef
Google scholar
|
[152] |
Wang S, Huo W, Fang F.
CrossRef
Google scholar
|
[153] |
Mao H, Guo X, Fu Y.
CrossRef
Google scholar
|
[154] |
Wang Q, Li J, Li Y.
CrossRef
Google scholar
|
[155] |
Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nature Reviews. Materials, 2020, 5(4): 295–309
CrossRef
Google scholar
|
[156] |
Sun W, Li J, Gao W.
CrossRef
Google scholar
|
[157] |
Sun W, Wang Y, Liu S.
CrossRef
Google scholar
|
[158] |
Hao M, Chen J, Chen J.
CrossRef
Google scholar
|
[159] |
Li J, Guo M, Yang X.
CrossRef
Google scholar
|
[160] |
Guo M, Li P, Wang A.
CrossRef
Google scholar
|
[161] |
Seh Z W, Kibsgaard J, Dickens C F.
CrossRef
Google scholar
|
[162] |
Plenge M K, Pedersen J K, Mints V A.
CrossRef
Google scholar
|
[163] |
Ma S, Huang J, Zhang C.
CrossRef
Google scholar
|
[164] |
Hao J, Zhuang Z, Cao K.
CrossRef
Google scholar
|
[165] |
Lei Y, Zhang L, Xu W.
CrossRef
Google scholar
|
[166] |
Yang S, Zhu J Y, Chen X N.
CrossRef
Google scholar
|
/
〈 | 〉 |