A review on different theoretical models of electrocaloric effect for refrigeration
Received date: 18 Jan 2023
Accepted date: 17 May 2023
Published date: 15 Aug 2023
Copyright
The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.
Cancan SHAO , A. A. AMIROV , Houbing HUANG . A review on different theoretical models of electrocaloric effect for refrigeration[J]. Frontiers in Energy, 2023 , 17(4) : 478 -503 . DOI: 10.1007/s11708-023-0884-6
1 |
Wang J J, Wang B, Chen L Q. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annual Review of Materials Research, 2019, 49(1): 127–152
|
2 |
KutnjakZRožič BPircR,
|
3 |
Shi J, Han D, Li Z.
|
4 |
CorreiaTZhang Q. Electrocaloric effect: An introduction. In: Correia T, Zhang Q, eds. Electrocaloric Materials. Engineering Materials. Berlin, Springer, 2014
|
5 |
GunnarSOleg PGeraldG. Electrocaloric cooling. In: Orhan E, ed. Refrigeration. IntechOpen, 2017
|
6 |
Lu S G, Zhang Q M. Electrocaloric materials for solid-state refrigeration. Advanced Materials, 2009, 21(19): 1983–1987
|
7 |
GranicherH. Induzierte Ferroelektrizitat von SrTiO3 bei sehr tiefen temperatur und uber dieKalterzeugung durch adiabatic Entpolarisierung. 1956
|
8 |
Hegenbarth E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics, 1961, 1(4): 242–243
|
9 |
KobekoPKurtschatov J. Dielektrische Eigenschaften der Seignettesalzkristalle. 1930
|
10 |
Wiseman G G, Kuebler J K. Electrocaloric effect in ferroelectric rochelle salt. Physical Review, 1963, 131(5): 2023–2027
|
11 |
Scott J F. Electrocaloric materials. Annual Review of Materials Research, 2011, 41(1): 229–240
|
12 |
Mischenko A S, Zhang Q, Scott J F.
|
13 |
Neese B, Chu B, Lu S G.
|
14 |
Moya X, Stern-Taulats E, Crossley S.
|
15 |
Torelló A, Lheritier P, Usui T.
|
16 |
SuchaneckGGerlach G. Thin films for electrocaloric cooling devices. In: Kumar S, Aswal D, eds. Recent Advances in Thin Films. Materials Horizons: From Nature to Nanomaterials. Singapore: Springer, 2020
|
17 |
Aziguli H, Chen X, Liu Y.
|
18 |
CuiHHeW PeiQ B,
|
19 |
Ožbolt M, Kitanovski A, Tušek J.
|
20 |
Honmi H, Hashizume Y, Nakajima T.
|
21 |
Greco A, Masselli C. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
|
22 |
MaY BAlbe KXuB X. Monte Carlo simulations of the electrocaloric effect in relaxor ferroelectrics. In: Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 2015
|
23 |
Ma Y B, Albe K, Xu B X. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(18): 184108
|
24 |
Beckman S P, Wan L F, Barr J A.
|
25 |
Tarnaoui M, Zaim M, Kerouad M.
|
26 |
Barr J A, Beckman S P. Electrocaloric response of KNbO3 from a first-principles effective Hamiltonian. Materials Science and Engineering B, 2015, 196: 40–43
|
27 |
Ghosez P, Junquera J. Modeling of ferroelectric oxide perovskites: From first to second principles. Annual Review of Condensed Matter Physics, 2022, 13(1): 325–364
|
28 |
Lee J Y, Soh A K, Chen H T.
|
29 |
Zhu J, Chen H, Hou X.
|
30 |
Gao R Z, Shi X M, Wang J.
|
31 |
Guo D, Gao J, Yu Y J.
|
32 |
Liebschner R, Gerlad G. 3D-FEM simulation of a MEMS-based electrocaloric Ba(Zr0.2Ti0.8)O3 thin-film microfluidic refrigeration device. Energy Technology: Generation, Conversion, Storage, Distribution, 2018, 6(8): 1553–1559
|
33 |
Shi J, Li Q, Gao T.
|
34 |
Torelló A, Defay E. Electrocaloric coolers: A review. Advanced Electronic Materials, 2022, 8(6): 2101031
|
35 |
Kumar A, Thakre A, Jeong D Y.
|
36 |
Moya X, Kar-Narayan S, Mathur N. Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450
|
37 |
He H, Lu X, Hanc E.
|
38 |
Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
|
39 |
Aprea C, Greco A, Masselli C.
|
40 |
Meng Y, Pu J H, Pei Q B. Electrocaloric cooling over high device temperature span. Joule, 2021, 5(4): 780–793
|
41 |
Völker B, Marton P, Elsässer C.
|
42 |
Völker B, Landis C M, Kamlah M. Multiscale modeling for ferroelectric materials: Identification of the phase-field model’s free energy for PZT from atomistic simulations. Smart Materials and Structures, 2012, 21(3): 035025
|
43 |
Zhang J, Hou X, Zhang Y.
|
44 |
KohnWSham L. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133
|
45 |
Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
|
46 |
Zhong W, Vanderbilt D, Rabe K M. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Ferroelectrics, 1998, 206(9): 181–204
|
47 |
Zhong W, Vanderbilt D, Rabe K M. Phase transitions in BaTiO3 from first principles. Physical Review Letters, 1994, 73(13): 1861–1864
|
48 |
Tinte S, Stachiotti M G, Sepliarsky M.
|
49 |
Migoni R. Lattice dynamics of BaTiO3 in the cubic phase. Journal of Physics Condensed Matter, 2010, 405(19): 4226–4230
|
50 |
Dick B G, Overhauser A W. Theory of the dielectric constants of alkali halide crystals. Physical Review, 1958, 112(1): 90–103
|
51 |
Thomas N W. A bond-valence approach to one-dimensional ferroelectrics. Ferroelectrics, 1989, 100(1): 77–100
|
52 |
Brown I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858–6919
|
53 |
Bellaiche L, García A, Vanderbilt D. Finite-temperature properties of Pb(Zr1–xTix)O3 alloys from first principles. Physical Review Letters, 2000, 84(23): 5427–5430
|
54 |
Walizer L, Lisenkov S, Bellaiche L. Finite-temperature properties of (Ba, Sr)TiO3 systems from atomistic simulations. Physical Review. B, 2006, 299(14): G1128–G1138
|
55 |
Bellaiche L, García A, Vanderbilt D. Low-temperature properties of Pb(Zr1−xTix)O3 solid solutions near the morphotropic phase boundary. Ferroelectrics, 2002, 266(1): 41–56
|
56 |
King-Smith R D, Vanderbilt D. First-principles investigation of ferroelectricity in perovskite compounds. Physical Review B: Condensed Matter, 1994, 49(9): 5828–5844
|
57 |
Kornev I A, Bellaiche L, Janolin P E.
|
58 |
Kornev I A, Lisenkov S, Haumont R.
|
59 |
Bhattacharjee S, Rahmedov D, Wang D W.
|
60 |
Íñiguez J, Vanderbilt D. First-principle study of the temperature-pressure phase diagram of BaTiO3. Physical Review Letters, 2002, 89(11): 115503
|
61 |
Kornev I A, Lisenkov S, Haumont R.
|
62 |
Lines M E, Glass A M, Burns G. Principles and applications of ferroelectrics and related materials. Physics Today, 1978, 31(9): 56–58
|
63 |
Zhong S, Ban Z G, Alpay S P.
|
64 |
Mani B K, Lisenkov S, Ponomareva I. Finite-temperature properties of antiferroelectric PbZrO3 from atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134112
|
65 |
Yang Y, Xu B, Xu C S.
|
66 |
Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Physical Review B, 2000, 61: 7877
|
67 |
Ramer N J, Rappe A M. Application of a new virtual crystal approach for the study of disordered perovskites. Journal of Physics and Chemistry of Solids, 2000, 61(2): 315–320
|
68 |
Rapaport D C. The art of molecular dynamics simulation. Computers in Physics, 1995, 10: 456
|
69 |
Mani B K, Chang C M, Ponomareva I. Atomistic study of soft-mode dynamics in PbTiO3. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(6): 064306
|
70 |
Prosandeev S, Ponomareva I, Naumov I.
|
71 |
Devonshire A F. Theory of ferroelectrics. Advances in Physics, 1954, 3(10): 85–130
|
72 |
Thomson W. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1878, 5(28): 4–27
|
73 |
Rožič B, Kosec M, Uršič H.
|
74 |
Liu Y, Wei J, Janolin P E.
|
75 |
Wu H H, Zhu J M, Zhang T Y. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Physical Chemistry Chemical Physics, 2015, 17(37): 23897–23908
|
76 |
Wu H H, Zhu J, Zhang T Y. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419–427
|
77 |
Peräntie J, Hagberg J, Uusimäki A.
|
78 |
Geng W P, Yang L, Bellaiche L.
|
79 |
Lu S G, Tang X G, Wu S H.
|
80 |
Lu S G, Rozic B, Zhang Q M.
|
81 |
Pirc R, Kutnjak Z, Blinc R.
|
82 |
Colla E V, Jurik N, Liu Y.
|
83 |
Luo L, Dietze M, Solterbeck C H.
|
84 |
Peng B L, Zhang Q, Gang B.
|
85 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method. Progress in Materials Science, 2022, 124: 100868
|
86 |
Chen L Q. Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002, 32(1): 113–140
|
87 |
Wu S, Sheng J, Yang C.
|
88 |
Liu M, Wang J. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports, 2015, 5(1): 7728
|
89 |
Haun M J, Furman E, Jang S J.
|
90 |
Chen X, Li S, Jian X.
|
91 |
Gao R Z, Shi X M, Wang J.
|
92 |
Sebald G, Seveyrat L, Capsal J F.
|
93 |
Li X, Qian X S, Lu S G.
|
94 |
Li Y L, Chen L Q. Temperature-strain phase diagram for BaTiO3 thin films. Applied Physics Letters, 2006, 88(7): 072905
|
95 |
Bai Y, Ding K, Zheng G P.
|
96 |
Qian X S, Ye H J, Zhang Y T.
|
97 |
Akcay G, Alpay S P, Mantese J V.
|
98 |
Li Z, Li J, Wu H H.
|
99 |
Okazaki A, Kawaminami M. Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973, 8(5): 545–550
|
100 |
Nishimatsu T, Iwamoto M, Kawazoe Y.
|
101 |
Liu C H, Si W, Wu C.
|
102 |
Lisenkov S, Mani B K, Chang C M.
|
103 |
Mikhaleva E A, Flerov I N, Gorev M V.
|
104 |
Zeng X W, Cohen R E. Thermo-electromechanical response of a ferroelectric perovskite from molecular dynamics simulations. Applied Physics Letters, 2011, 99(14): 142902
|
105 |
Sai N, Rabe K M, Vanderbilt D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Physical Review B: Condensed Matter, 2002, 66(10): 104108
|
106 |
Pan Z, Wang P, Hou X.
|
107 |
Wang S, Yi M, Xu B X. A phase-field model of relaxor ferroelectrics based on random field theory. International Journal of Solids and Structures, 2016, 83: 142–153
|
108 |
Lisenkov S, Mani B, Glazkova E.
|
109 |
Glazkova-Swedberg E, Cuozzo J, Lisenkov S.
|
110 |
Kingsland M, Lisenkov S, Ponomareva I. Unveiling electrocaloric potential of antiferroelectrics with phase competition. Advanced Theory and Simulations, 2018, 1(11): 1800096
|
111 |
Xu K, Shi X M, Dong S Z.
|
112 |
Tan X, Ma C, Frederick J.
|
113 |
Liu N T, Liang R H, Zhang G Z.
|
114 |
Ayyub P, Chattopadhyay S, Pinto R.
|
115 |
Nishimatsu T, Barr J A, Beckman S P. Direct molecular dynamics simulation of electrocaloric effect in BaTiO3. Journal of the Physical Society of Japan, 2013, 82(11): 114605
|
116 |
Rožič B, Malič B, Uršič H.
|
117 |
Zhang J T, Hou X, Wang J. Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics: Condensed Matter, 2019, 31: 255402
|
118 |
Marathe M, Grünebohm A, Nishimatsu T.
|
119 |
Joffé A F. Mechanical and electrical strength and cohesion. Transactions of the Faraday Society, 1928, 24: 65–72
|
120 |
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506–509
|
121 |
Glazkova E, Chang C M, Lisenkov S.
|
122 |
Bin-Omran S, Kornev I, Ponomareva I.
|
123 |
Mani B K, Chang C M, Lisenkov S.
|
124 |
Ponomareva I, Naumov I I, Kornev I.
|
125 |
Fu H, Bellaiche L. Ferroelectricity in barium titanate quantum dots and wires. Physical Review Letters, 2003, 91(25): 257601
|
126 |
Liu D, Wang J, Jafri H M.
|
127 |
Zhu W X, Shi X M, Gao R Z.
|
128 |
Bin-Omran S. The influence of mechanical and electrical boundary conditions on electrocaloric response in (Ba0.50Sr0.50)TiO3 thin films. Materials Research Bulletin, 2017, 95: 334–338
|
129 |
Wang J, Kamlah M. Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics, 2010, 77(18): 3658–3669
|
130 |
Li Y L, Hu S Y, Liu Z K.
|
131 |
Marathe M, Ederer C. Electrocaloric effect in BaTiO3: A first-principles-based study on the effect of misfit strain. Applied Physics Letters, 2014, 104(21): 212902
|
132 |
Akcay G, Alpay S P, Rossetti G A Jr.
|
133 |
Wang J, Ma J, Huang H B.
|
134 |
Zhang J, Heitmann A A, Alpay S P.
|
135 |
Qiu J, Jiang Q. Effect of misfit strain on the electrocaloric effect in epitaxial SrTiO3 thin films. European Physical Journal B, 2009, 71(1): 15–19
|
136 |
Karthik J, Martin L W. Effect of domain walls on the electrocaloric properties of Pb(Zr1–xTix)O3 thin films. Applied Physics Letters, 2011, 99(3): 032904
|
137 |
Wang J J, Fortino D, Wang B.
|
138 |
Li B, Wang J B, Zhong X L.
|
139 |
Wang F, Li B, Ou Y.
|
140 |
Li B, Wang J B, Zhong X L.
|
141 |
Wang F, Li B, Ou Y.
|
142 |
Huang C, Yang H B, Gao C F. Giant electrocaloric effect in a cracked ferroelectric. Journal of Applied Physics, 2018, 123(15): 154102
|
143 |
Van Lich L, Hou X, Phan M H.
|
144 |
Ji Y, Chen W J, Zheng Y. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics. D, Applied Physics, 2020, 53(50): 505302
|
145 |
Huang D, Wang J B, Li B.
|
146 |
Wang J, Liu M, Zhang Y.
|
147 |
Hou X, Wu H P, Li H Y.
|
148 |
Li B, Wang J B, Zhong X L.
|
149 |
Zeng Y K, Li B, Wang J B.
|
150 |
Ye C, Wang J B, Li B.
|
151 |
Van Lich L, Vu N L, Ha M T.
|
152 |
Li B, Wang J B, Zhong X L.
|
153 |
Sluka T, Tagantsev A, Damjanovic D.
|
154 |
Ondrejkovic P, Marton P, Guennou M.
|
155 |
Hou X, Li X, Zhang J.
|
156 |
Chen X, Fang C. Study of electrocaloric effect in barium titanate nanoparticle with core-shell model. Physica B: Condensed Matter, 2013, 415: 14–17
|
157 |
Qiu J H, Jiang Q. Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. Journal of Applied Physics, 2009, 105(3): 034110
|
158 |
Morozovska A N, Eliseev E A, Glinchuk M D.
|
159 |
Patel S, Kumar M. Influence of grain size on the electrocaloric and pyroelectric properties in non-reducible BaTiO3 ceramics. AIP Advances, 2020, 10(8): 085302
|
160 |
Das S, Tang Y L, Hong Z.
|
161 |
Li Q, Stoica V A, Paściak M.
|
162 |
Wang Y J, Feng Y P, Zhu Y L.
|
163 |
Abid A Y, Sun Y, Hou X.
|
164 |
Huang H, Zhang G, Ma X.
|
165 |
Ishidate T, Abe S, Takahashi H.
|
166 |
Wang J J, Wu P P, Ma X Q.
|
167 |
Yu H, Wang J, Kozinov S.
|
168 |
Huang Y H, Wang J J, Yang T N.
|
169 |
Cao G P, Huang H B, Liang D S.
|
170 |
Zhang G Z, Zhang X S, Yang T N.
|
171 |
Qian J F, Peng R C, Shen Z H.
|
172 |
Shi X M, Wang J, Xu J W.
|
173 |
Xu S Q, Shi X M, Pan H.
|
174 |
Liu Y, Yang T, Zhang B.
|
175 |
Gao R Z, Wang J, Wang J S.
|
176 |
Wang J, Zhu R X, Ma J.
|
177 |
Wang J, Fan Y Y, Song Y.
|
178 |
Gu H, Qian X, Li X.
|
179 |
Plaznik U, Vrabelj M, Kutnjak Z.
|
180 |
Qian X S, Yang T N, Zhang T.
|
181 |
Akamatsu H, Yuan Y, Stoica V A.
|
182 |
Yang T, Wang B, Hu J M.
|
183 |
Shao C C, Shi X M, Wang J.
|
184 |
Li Q, Shi J, Han D.
|
185 |
Aprea C, Greco A, Maiorino A.
|
186 |
Aprea C, Greco A, Maiorino A.
|
187 |
ApreaCGreco AMaiorinoA,
|
188 |
Aprea C, Greco A, Maiorino A.
|
189 |
Aprea C, Greco A, Maiorino A.
|
190 |
Gu H, Qian X S, Ye H J.
|
191 |
Zhang T, Qian X S, Gu H M.
|
192 |
Smullin S J, Wang Y, Schwartz D E. System optimization of a heat-switch-based electrocaloric heat pump. Applied Physics Letters, 2015, 107(9): 093903
|
/
〈 | 〉 |