A review on different theoretical models of electrocaloric effect for refrigeration

Cancan SHAO, A. A. AMIROV, Houbing HUANG

PDF(2834 KB)
PDF(2834 KB)
Front. Energy ›› 2023, Vol. 17 ›› Issue (4) : 478-503. DOI: 10.1007/s11708-023-0884-6
REVIEW ARTICLE
REVIEW ARTICLE

A review on different theoretical models of electrocaloric effect for refrigeration

Author information +
History +

Abstract

The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.

Graphical abstract

Keywords

electrocaloric effect / effective Hamiltonian / phase-field modeling / different theoretical models

Cite this article

Download citation ▾
Cancan SHAO, A. A. AMIROV, Houbing HUANG. A review on different theoretical models of electrocaloric effect for refrigeration. Front. Energy, 2023, 17(4): 478‒503 https://doi.org/10.1007/s11708-023-0884-6

References

[1]
Wang J J, Wang B, Chen L Q. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annual Review of Materials Research, 2019, 49(1): 127–152
CrossRef Google scholar
[2]
KutnjakZRožič BPircR, . Electrocaloric effect: Theory, measurements, and applications. In: Webster J G, ed. Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc., 2015
[3]
Shi J, Han D, Li Z. . Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225
CrossRef Google scholar
[4]
CorreiaTZhang Q. Electrocaloric effect: An introduction. In: Correia T, Zhang Q, eds. Electrocaloric Materials. Engineering Materials. Berlin, Springer, 2014
[5]
GunnarSOleg PGeraldG. Electrocaloric cooling. In: Orhan E, ed. Refrigeration. IntechOpen, 2017
[6]
Lu S G, Zhang Q M. Electrocaloric materials for solid-state refrigeration. Advanced Materials, 2009, 21(19): 1983–1987
CrossRef Google scholar
[7]
GranicherH. Induzierte Ferroelektrizitat von SrTiO3 bei sehr tiefen temperatur und uber dieKalterzeugung durch adiabatic Entpolarisierung. 1956
[8]
Hegenbarth E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics, 1961, 1(4): 242–243
CrossRef Google scholar
[9]
KobekoPKurtschatov J. Dielektrische Eigenschaften der Seignettesalzkristalle. 1930
[10]
Wiseman G G, Kuebler J K. Electrocaloric effect in ferroelectric rochelle salt. Physical Review, 1963, 131(5): 2023–2027
CrossRef Google scholar
[11]
Scott J F. Electrocaloric materials. Annual Review of Materials Research, 2011, 41(1): 229–240
CrossRef Google scholar
[12]
Mischenko A S, Zhang Q, Scott J F. . Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2010, 37(23): 1270–1271
CrossRef Google scholar
[13]
Neese B, Chu B, Lu S G. . Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823
CrossRef Google scholar
[14]
Moya X, Stern-Taulats E, Crossley S. . Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25(9): 1360–1365
CrossRef Google scholar
[15]
Torelló A, Lheritier P, Usui T. . Giant temperature span in electrocaloric regenerator. Science, 2020, 370(6512): 125–129
CrossRef Google scholar
[16]
SuchaneckGGerlach G. Thin films for electrocaloric cooling devices. In: Kumar S, Aswal D, eds. Recent Advances in Thin Films. Materials Horizons: From Nature to Nanomaterials. Singapore: Springer, 2020
[17]
Aziguli H, Chen X, Liu Y. . Enhanced electrocaloric effect in lead-free organic and inorganic relaxor ferroelectric composites near room temperature. Applied Physics Letters, 2018, 112(19): 193902
CrossRef Google scholar
[18]
CuiHHeW PeiQ B, . Electrocaloric effects in ferroelectric polymers. In: Kamal A, ed. Organic Ferroelectric Materials and Applications. Woodhead Publishing, 2022
[19]
Ožbolt M, Kitanovski A, Tušek J. . Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives. International Journal of Refrigeration, 2014, 40: 174–188
CrossRef Google scholar
[20]
Honmi H, Hashizume Y, Nakajima T. . Thermodynamic analysis of a cooling system using electrocaloric effect. Japanese Journal of Applied Physics, 2017, 56(S10): 10PC09
CrossRef Google scholar
[21]
Greco A, Masselli C. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
CrossRef Google scholar
[22]
MaY BAlbe KXuB X. Monte Carlo simulations of the electrocaloric effect in relaxor ferroelectrics. In: Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 2015
[23]
Ma Y B, Albe K, Xu B X. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(18): 184108
CrossRef Google scholar
[24]
Beckman S P, Wan L F, Barr J A. . Effective Hamiltonian methods for predicting the electrocaloric behavior of BaTiO3. Materials Letters, 2012, 89(25): 254–257
CrossRef Google scholar
[25]
Tarnaoui M, Zaim M, Kerouad M. . First-principles effective Hamiltonian calculations of the electrocaloric effect in ferroelectric BaxSr1–xTiO3. Physics Letters, 2020, 384(4): 126093
CrossRef Google scholar
[26]
Barr J A, Beckman S P. Electrocaloric response of KNbO3 from a first-principles effective Hamiltonian. Materials Science and Engineering B, 2015, 196: 40–43
CrossRef Google scholar
[27]
Ghosez P, Junquera J. Modeling of ferroelectric oxide perovskites: From first to second principles. Annual Review of Condensed Matter Physics, 2022, 13(1): 325–364
CrossRef Google scholar
[28]
Lee J Y, Soh A K, Chen H T. . Phase-field modeling of the influence of domain structures on the electrocaloric effects in PbTiO3 thin films. Journal of Materials Science, 2015, 50(3): 1382–1393
CrossRef Google scholar
[29]
Zhu J, Chen H, Hou X. . Phase-field simulations on the electrocaloric properties of ferroelectric nanocylinders with the consideration of surface polarization effect. Journal of Applied Physics, 2019, 125(23): 234101
CrossRef Google scholar
[30]
Gao R Z, Shi X M, Wang J. . Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. Journal of the American Ceramic Society, 2022, 105(6): 3689–3714
CrossRef Google scholar
[31]
Guo D, Gao J, Yu Y J. . Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. International Journal of Heat and Mass Transfer, 2014, 72: 559–564
CrossRef Google scholar
[32]
Liebschner R, Gerlad G. 3D-FEM simulation of a MEMS-based electrocaloric Ba(Zr0.2Ti0.8)O3 thin-film microfluidic refrigeration device. Energy Technology: Generation, Conversion, Storage, Distribution, 2018, 6(8): 1553–1559
CrossRef Google scholar
[33]
Shi J, Li Q, Gao T. . Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2020, 121: 279–288
CrossRef Google scholar
[34]
Torelló A, Defay E. Electrocaloric coolers: A review. Advanced Electronic Materials, 2022, 8(6): 2101031
CrossRef Google scholar
[35]
Kumar A, Thakre A, Jeong D Y. . Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(23): 6836–6859
CrossRef Google scholar
[36]
Moya X, Kar-Narayan S, Mathur N. Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450
CrossRef Google scholar
[37]
He H, Lu X, Hanc E. . Advances in lead-free pyroelectric materials: A comprehensive review. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1494–1516
CrossRef Google scholar
[38]
Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
CrossRef Google scholar
[39]
Aprea C, Greco A, Masselli C. . A review of the state of the art of the solid-state caloric cooling processes at room-temperature before. International Journal of Refrigeration, 2019, 106: 66–88
CrossRef Google scholar
[40]
Meng Y, Pu J H, Pei Q B. Electrocaloric cooling over high device temperature span. Joule, 2021, 5(4): 780–793
CrossRef Google scholar
[41]
Völker B, Marton P, Elsässer C. . Multiscale modeling for ferroelectric materials: A transition from the atomic level to phase-field modeling. Continuum Mechanics and Thermodynamics, 2011, 23(5): 435–451
CrossRef Google scholar
[42]
Völker B, Landis C M, Kamlah M. Multiscale modeling for ferroelectric materials: Identification of the phase-field model’s free energy for PZT from atomistic simulations. Smart Materials and Structures, 2012, 21(3): 035025
CrossRef Google scholar
[43]
Zhang J, Hou X, Zhang Y. . Electrocaloric effect in ferroelectric materials: From phase field to first-principles based effective Hamiltonian modeling. Materials Reports: Energy, 2021, 1(3): 100050
CrossRef Google scholar
[44]
KohnWSham L. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133
[45]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
CrossRef Google scholar
[46]
Zhong W, Vanderbilt D, Rabe K M. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Ferroelectrics, 1998, 206(9): 181–204
CrossRef Google scholar
[47]
Zhong W, Vanderbilt D, Rabe K M. Phase transitions in BaTiO3 from first principles. Physical Review Letters, 1994, 73(13): 1861–1864
CrossRef Google scholar
[48]
Tinte S, Stachiotti M G, Sepliarsky M. . Atomistic modeling of BaTiO3 based on first-principles calculations. Journal of Physics Condensed Matter, 1999, 11(48): 9679–9690
CrossRef Google scholar
[49]
Migoni R. Lattice dynamics of BaTiO3 in the cubic phase. Journal of Physics Condensed Matter, 2010, 405(19): 4226–4230
CrossRef Google scholar
[50]
Dick B G, Overhauser A W. Theory of the dielectric constants of alkali halide crystals. Physical Review, 1958, 112(1): 90–103
CrossRef Google scholar
[51]
Thomas N W. A bond-valence approach to one-dimensional ferroelectrics. Ferroelectrics, 1989, 100(1): 77–100
CrossRef Google scholar
[52]
Brown I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858–6919
CrossRef Google scholar
[53]
Bellaiche L, García A, Vanderbilt D. Finite-temperature properties of Pb(Zr1–xTix)O3 alloys from first principles. Physical Review Letters, 2000, 84(23): 5427–5430
CrossRef Google scholar
[54]
Walizer L, Lisenkov S, Bellaiche L. Finite-temperature properties of (Ba, Sr)TiO3 systems from atomistic simulations. Physical Review. B, 2006, 299(14): G1128–G1138
CrossRef Google scholar
[55]
Bellaiche L, García A, Vanderbilt D. Low-temperature properties of Pb(Zr1−xTix)O3 solid solutions near the morphotropic phase boundary. Ferroelectrics, 2002, 266(1): 41–56
CrossRef Google scholar
[56]
King-Smith R D, Vanderbilt D. First-principles investigation of ferroelectricity in perovskite compounds. Physical Review B: Condensed Matter, 1994, 49(9): 5828–5844
CrossRef Google scholar
[57]
Kornev I A, Bellaiche L, Janolin P E. . Phase diagram of Pb(Zr,Ti)O3 solid solutions from first-principles. Physical Review Letters, 2006, 97(15): 157601
CrossRef Google scholar
[58]
Kornev I A, Lisenkov S, Haumont R. . Finite-temperature properties of multiferroic BiFeO3. Physical Review Letters, 2007, 99(22): 227602
CrossRef Google scholar
[59]
Bhattacharjee S, Rahmedov D, Wang D W. . Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Physical Review Letters, 2014, 112(14): 147601
CrossRef Google scholar
[60]
Íñiguez J, Vanderbilt D. First-principle study of the temperature-pressure phase diagram of BaTiO3. Physical Review Letters, 2002, 89(11): 115503
CrossRef Google scholar
[61]
Kornev I A, Lisenkov S, Haumont R. . Finite-temperature properties of multiferroic BiFeO3. Physical Review Letters, 2007, 99(22): 227602
CrossRef Google scholar
[62]
Lines M E, Glass A M, Burns G. Principles and applications of ferroelectrics and related materials. Physics Today, 1978, 31(9): 56–58
CrossRef Google scholar
[63]
Zhong S, Ban Z G, Alpay S P. . Large piezoelectric strains from polarization graded ferroelectrics. Applied Physics Letters, 2006, 89(14): 142913
CrossRef Google scholar
[64]
Mani B K, Lisenkov S, Ponomareva I. Finite-temperature properties of antiferroelectric PbZrO3 from atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134112
CrossRef Google scholar
[65]
Yang Y, Xu B, Xu C S. . Understanding and revisiting the most complex perovskite system via atomistic simulations. Physical Review. B, 2018, 97(17): 174106
CrossRef Google scholar
[66]
Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Physical Review B, 2000, 61: 7877
CrossRef Google scholar
[67]
Ramer N J, Rappe A M. Application of a new virtual crystal approach for the study of disordered perovskites. Journal of Physics and Chemistry of Solids, 2000, 61(2): 315–320
CrossRef Google scholar
[68]
Rapaport D C. The art of molecular dynamics simulation. Computers in Physics, 1995, 10: 456
CrossRef Google scholar
[69]
Mani B K, Chang C M, Ponomareva I. Atomistic study of soft-mode dynamics in PbTiO3. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(6): 064306
CrossRef Google scholar
[70]
Prosandeev S, Ponomareva I, Naumov I. . Original properties of dipole vortices in zero-dimensional ferroelectrics. Journal of Physics Condensed Matter, 2008, 20(19): 193201
CrossRef Google scholar
[71]
Devonshire A F. Theory of ferroelectrics. Advances in Physics, 1954, 3(10): 85–130
CrossRef Google scholar
[72]
Thomson W. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1878, 5(28): 4–27
CrossRef Google scholar
[73]
Rožič B, Kosec M, Uršič H. . Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. Journal of Applied Physics, 2011, 110(6): 519
CrossRef Google scholar
[74]
Liu Y, Wei J, Janolin P E. . Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(10): 104107
CrossRef Google scholar
[75]
Wu H H, Zhu J M, Zhang T Y. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Physical Chemistry Chemical Physics, 2015, 17(37): 23897–23908
CrossRef Google scholar
[76]
Wu H H, Zhu J, Zhang T Y. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419–427
CrossRef Google scholar
[77]
Peräntie J, Hagberg J, Uusimäki A. . Electric-field-induced dielectric and temperature changes in a ⟨011⟩-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(13): 134119
CrossRef Google scholar
[78]
Geng W P, Yang L, Bellaiche L. . Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials (Deerfield Beach, Fla.), 2015, 27(20): 3165–3169
CrossRef Google scholar
[79]
Lu S G, Tang X G, Wu S H. . Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014, 29(1): 6–12
CrossRef Google scholar
[80]
Lu S G, Rozic B, Zhang Q M. . Electrocaloric effect in ferroelectric polymers. Applied Physics. A, Materials Science & Processing, 2012, 107(3): 559–566
CrossRef Google scholar
[81]
Pirc R, Kutnjak Z, Blinc R. . Electrocaloric effect in relaxor ferroelectrics. Journal of Applied Physics, 2011, 110(7): 074113
CrossRef Google scholar
[82]
Colla E V, Jurik N, Liu Y. . Kinetics and thermodynamics of the ferroelectric transitions in PbMg1/3Nb2/3O3 and PbMg1/3Nb2/3O3-12% PbTiO3 crystals. Journal of Applied Physics, 2013, 113(18): 184104
CrossRef Google scholar
[83]
Luo L, Dietze M, Solterbeck C H. . Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 single crystal. Applied Physics Letters, 2012, 101(6): 062907
CrossRef Google scholar
[84]
Peng B L, Zhang Q, Gang B. . Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film. Energy & Environmental Science, 2019, 12(5): 1708–1717
CrossRef Google scholar
[85]
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method. Progress in Materials Science, 2022, 124: 100868
CrossRef Google scholar
[86]
Chen L Q. Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002, 32(1): 113–140
CrossRef Google scholar
[87]
Wu S, Sheng J, Yang C. . Phase-field model of hydride blister growth kinetics on zirconium surface. Frontiers in Materials, 2022, 9: 916593
CrossRef Google scholar
[88]
Liu M, Wang J. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports, 2015, 5(1): 7728
CrossRef Google scholar
[89]
Haun M J, Furman E, Jang S J. . Thermodynamic theory of PbTiO3. Journal of Applied Physics, 1987, 62(8): 3331–3338
CrossRef Google scholar
[90]
Chen X, Li S, Jian X. . Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis. Applied Physics Letters, 2021, 118(12): 122904
CrossRef Google scholar
[91]
Gao R Z, Shi X M, Wang J. . Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase-field simulations. Advanced Functional Materials, 2021, 31(38): 2104393
CrossRef Google scholar
[92]
Sebald G, Seveyrat L, Capsal J F. . Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Applied Physics Letters, 2012, 101(2): 022907
CrossRef Google scholar
[93]
Li X, Qian X S, Lu S G. . Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene terpolymer. Applied Physics Letters, 2011, 99(5): 052907
CrossRef Google scholar
[94]
Li Y L, Chen L Q. Temperature-strain phase diagram for BaTiO3 thin films. Applied Physics Letters, 2006, 88(7): 072905
CrossRef Google scholar
[95]
Bai Y, Ding K, Zheng G P. . Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Physica Status Solidi. A, Applications and Materials Science, 2012, 209(5): 941–944
CrossRef Google scholar
[96]
Qian X S, Ye H J, Zhang Y T. . Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305
CrossRef Google scholar
[97]
Akcay G, Alpay S P, Mantese J V. . Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields. Applied Physics Letters, 2007, 90(25): 252909
CrossRef Google scholar
[98]
Li Z, Li J, Wu H H. . Effect of electric field orientation on ferroelectric phase transition and electrocaloric effect. Acta Materialia, 2020, 191: 13–23
CrossRef Google scholar
[99]
Okazaki A, Kawaminami M. Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973, 8(5): 545–550
CrossRef Google scholar
[100]
Nishimatsu T, Iwamoto M, Kawazoe Y. . First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: Consequences to structural transition temperatures. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(13): 134106
CrossRef Google scholar
[101]
Liu C H, Si W, Wu C. . The ignored effects of vibrational entropy and electrocaloric effect in PbTiO3 and PbZr0.5Ti0.5O3 as studied through first-principles calculation. Acta Materialia, 2020, 191(1): 221–229
CrossRef Google scholar
[102]
Lisenkov S, Mani B K, Chang C M. . Multicaloric effect in ferroelectric PbTiO3 from first principles. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(22): 224101
CrossRef Google scholar
[103]
Mikhaleva E A, Flerov I N, Gorev M V. . Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Physics of the Solid State, 2012, 54(9): 1832–1840
CrossRef Google scholar
[104]
Zeng X W, Cohen R E. Thermo-electromechanical response of a ferroelectric perovskite from molecular dynamics simulations. Applied Physics Letters, 2011, 99(14): 142902
CrossRef Google scholar
[105]
Sai N, Rabe K M, Vanderbilt D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Physical Review B: Condensed Matter, 2002, 66(10): 104108
CrossRef Google scholar
[106]
Pan Z, Wang P, Hou X. . Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Advanced Energy Materials, 2020, 10: 2001536
CrossRef Google scholar
[107]
Wang S, Yi M, Xu B X. A phase-field model of relaxor ferroelectrics based on random field theory. International Journal of Solids and Structures, 2016, 83: 142–153
CrossRef Google scholar
[108]
Lisenkov S, Mani B, Glazkova E. . Scaling law for electrocaloric temperature change in antiferroelectrics. Scientific Reports, 2016, 6(1): 19590
CrossRef Google scholar
[109]
Glazkova-Swedberg E, Cuozzo J, Lisenkov S. . Electrocaloric effect in PbZrO3 thin films with antiferroelectric-ferroelectric phase competition. Computational Materials Science, 2017, 129: 44–48
CrossRef Google scholar
[110]
Kingsland M, Lisenkov S, Ponomareva I. Unveiling electrocaloric potential of antiferroelectrics with phase competition. Advanced Theory and Simulations, 2018, 1(11): 1800096
CrossRef Google scholar
[111]
Xu K, Shi X M, Dong S Z. . Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations. ACS Applied Materials & Interfaces, 2022, 14(22): 25770–25780
CrossRef Google scholar
[112]
Tan X, Ma C, Frederick J. . The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. Journal of the American Ceramic Society, 2011, 94(12): 4091–4107
CrossRef Google scholar
[113]
Liu N T, Liang R H, Zhang G Z. . Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration. Journal of Materials Chemistry. C, 2018, 6: 10415–10421
CrossRef Google scholar
[114]
Ayyub P, Chattopadhyay S, Pinto R. . Ferroelectric behavior in thin films of antiferroelectric materials. Physical Review B: Condensed Matter, 1998, 57(10): R5559–R5562
CrossRef Google scholar
[115]
Nishimatsu T, Barr J A, Beckman S P. Direct molecular dynamics simulation of electrocaloric effect in BaTiO3. Journal of the Physical Society of Japan, 2013, 82(11): 114605
CrossRef Google scholar
[116]
Rožič B, Malič B, Uršič H. . Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics, 2010, 405(1): 26–31
CrossRef Google scholar
[117]
Zhang J T, Hou X, Wang J. Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics: Condensed Matter, 2019, 31: 255402
CrossRef Google scholar
[118]
Marathe M, Grünebohm A, Nishimatsu T. . First principles-based calculation of the electrocaloric effect in BaTiO3: A comparison of direct and indirect methods. Physical Review. B, 2016, 93(5): 054110
CrossRef Google scholar
[119]
Joffé A F. Mechanical and electrical strength and cohesion. Transactions of the Faraday Society, 1928, 24: 65–72
CrossRef Google scholar
[120]
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506–509
CrossRef Google scholar
[121]
Glazkova E, Chang C M, Lisenkov S. . Depolarizing field in ultrathin electrocalorics. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(6): 064101
CrossRef Google scholar
[122]
Bin-Omran S, Kornev I, Ponomareva I. . Diffuse phase transition in ferroelectric ultrathin films from first principles. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(9): 094119
CrossRef Google scholar
[123]
Mani B K, Chang C M, Lisenkov S. . Critical thickness for antiferroelectricity in PbZrO3. Physical Review Letters, 2015, 115(9): 097601
CrossRef Google scholar
[124]
Ponomareva I, Naumov I I, Kornev I. . Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(14): 140102
CrossRef Google scholar
[125]
Fu H, Bellaiche L. Ferroelectricity in barium titanate quantum dots and wires. Physical Review Letters, 2003, 91(25): 257601
CrossRef Google scholar
[126]
Liu D, Wang J, Jafri H M. . Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. npj Quantum Materials, 2022, 7: 34
CrossRef Google scholar
[127]
Zhu W X, Shi X M, Gao R Z. . Enhancing the elastocaloric strength by combining positive and negative elastocaloric effects. Physica Status Solidi. Rapid Research Letters, 2022, 16(8): 2200183
CrossRef Google scholar
[128]
Bin-Omran S. The influence of mechanical and electrical boundary conditions on electrocaloric response in (Ba0.50Sr0.50)TiO3 thin films. Materials Research Bulletin, 2017, 95: 334–338
CrossRef Google scholar
[129]
Wang J, Kamlah M. Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics, 2010, 77(18): 3658–3669
CrossRef Google scholar
[130]
Li Y L, Hu S Y, Liu Z K. . Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Applied Physics Letters, 2002, 81(3): 427–429
CrossRef Google scholar
[131]
Marathe M, Ederer C. Electrocaloric effect in BaTiO3: A first-principles-based study on the effect of misfit strain. Applied Physics Letters, 2014, 104(21): 212902
CrossRef Google scholar
[132]
Akcay G, Alpay S P, Rossetti G A Jr. . Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. Journal of Applied Physics, 2008, 103(2): 024104
CrossRef Google scholar
[133]
Wang J, Ma J, Huang H B. . Ferroelectric domain-wall logic units. Nature Communications, 2022, 13(1): 3255
CrossRef Google scholar
[134]
Zhang J, Heitmann A A, Alpay S P. . Electrothermal properties of perovskite ferroelectric films. Journal of Materials Science, 2009, 44(19): 5263–5273
CrossRef Google scholar
[135]
Qiu J, Jiang Q. Effect of misfit strain on the electrocaloric effect in epitaxial SrTiO3 thin films. European Physical Journal B, 2009, 71(1): 15–19
CrossRef Google scholar
[136]
Karthik J, Martin L W. Effect of domain walls on the electrocaloric properties of Pb(Zr1–xTix)O3 thin films. Applied Physics Letters, 2011, 99(3): 032904
CrossRef Google scholar
[137]
Wang J J, Fortino D, Wang B. . Extraordinarily large electrocaloric strength of metal-free perovskites. Advanced Materials, 2020, 32(7): 1906224
CrossRef Google scholar
[138]
Li B, Wang J B, Zhong X L. . Room temperature electrocaloric effect on PbZr0.8Ti0.2O3 thin film. Journal of Applied Physics, 2010, 107(1): 014109
CrossRef Google scholar
[139]
Wang F, Li B, Ou Y. . Multicaloric effects in PbZr0.2Ti0.8O3 thin films with 90° domain structure. Europhysics Letters, 2017, 118(1): 17005
CrossRef Google scholar
[140]
Li B, Wang J B, Zhong X L. . The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. Europhysics Letters, 2013, 102(4): 47004
CrossRef Google scholar
[141]
Wang F, Li B, Ou Y. . A stress-mediated negative/positive electrocaloric effect in Bi4Ti3O12 nanoparticles. Materials Letters, 2017, 196: 179–182
CrossRef Google scholar
[142]
Huang C, Yang H B, Gao C F. Giant electrocaloric effect in a cracked ferroelectric. Journal of Applied Physics, 2018, 123(15): 154102
CrossRef Google scholar
[143]
Van Lich L, Hou X, Phan M H. . Electrocaloric effect enhancement in compositionally graded ferroelectric thin films driven by a needle-to-vortex domain structure transition. Journal of Physics. D, Applied Physics, 2021, 54(25): 255307
CrossRef Google scholar
[144]
Ji Y, Chen W J, Zheng Y. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics. D, Applied Physics, 2020, 53(50): 505302
CrossRef Google scholar
[145]
Huang D, Wang J B, Li B. . Influence of 90° charged domain walls on the electrocaloric effect in PbTiO3 ferroelectric thin films. Journal of Applied Physics, 2016, 120(21): 214105
CrossRef Google scholar
[146]
Wang J, Liu M, Zhang Y. . Large electrocaloric effect induced by the multi-domain to mono-domain transition in ferroelectrics. Journal of Applied Physics, 2014, 115(16): 164102
CrossRef Google scholar
[147]
Hou X, Wu H P, Li H Y. . Giant negative electrocaloric effect induced by domain transition in the strained ferroelectric thin film. Journal of Physics: Condensed Matter, 2018, 30(46): 465401
CrossRef Google scholar
[148]
Li B, Wang J B, Zhong X L. . Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Advances, 2013, 3: 7928–7932
CrossRef Google scholar
[149]
Zeng Y K, Li B, Wang J B. . Influence of vortex domain switching on the electrocaloric property of a ferroelectric nanoparticle. RSC Advances, 2014, 4(57): 30211–30214
CrossRef Google scholar
[150]
Ye C, Wang J B, Li B. . Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure. Scientific Reports, 2018, 8(1): 293
CrossRef Google scholar
[151]
Van Lich L, Vu N L, Ha M T. . Enhancement of electrocaloric effect in compositionally graded ferroelectric nanowires. Journal of Applied Physics, 2020, 127(21): 214103
CrossRef Google scholar
[152]
Li B, Wang J B, Zhong X L. . Domain wall contribution to the electrocaloric effect in BaTiO3 nanoparticle: A phase-field investigation. Journal of Nanoparticle Research, 2013, 15(2): 1427
CrossRef Google scholar
[153]
Sluka T, Tagantsev A, Damjanovic D. . Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Communications, 2012, 3(1): 748
CrossRef Google scholar
[154]
Ondrejkovic P, Marton P, Guennou M. . Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(2): 024114
CrossRef Google scholar
[155]
Hou X, Li X, Zhang J. . Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics. Physical Review Applied, 2021, 15(5): 054019
CrossRef Google scholar
[156]
Chen X, Fang C. Study of electrocaloric effect in barium titanate nanoparticle with core-shell model. Physica B: Condensed Matter, 2013, 415: 14–17
CrossRef Google scholar
[157]
Qiu J H, Jiang Q. Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. Journal of Applied Physics, 2009, 105(3): 034110
CrossRef Google scholar
[158]
Morozovska A N, Eliseev E A, Glinchuk M D. . Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Physical Review Materials, 2019, 3(10): 104414
CrossRef Google scholar
[159]
Patel S, Kumar M. Influence of grain size on the electrocaloric and pyroelectric properties in non-reducible BaTiO3 ceramics. AIP Advances, 2020, 10(8): 085302
CrossRef Google scholar
[160]
Das S, Tang Y L, Hong Z. . Observation of room-temperature polar skyrmions. Nature, 2019, 568(7752): 368–372
CrossRef Google scholar
[161]
Li Q, Stoica V A, Paściak M. . Subterahertz collective dynamics of polar vortices. Nature, 2021, 592(7854): 376–380
CrossRef Google scholar
[162]
Wang Y J, Feng Y P, Zhu Y L. . Polar meron lattice in strained oxide ferroelectrics. Nature Materials, 2020, 19(8): 881–886
CrossRef Google scholar
[163]
Abid A Y, Sun Y, Hou X. . Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nature Communications, 2021, 12(1): 2054
CrossRef Google scholar
[164]
Huang H, Zhang G, Ma X. . Size effects of electrocaloric cooling in ferroelectric nanowires. Journal of the American Ceramic Society, 2018, 101(4): 1566–1575
CrossRef Google scholar
[165]
Ishidate T, Abe S, Takahashi H. . Phase diagram of BaTiO3. Physical Review Letters, 1997, 78(12): 2397–2400
CrossRef Google scholar
[166]
Wang J J, Wu P P, Ma X Q. . Temperature-pressure phase diagram and ferroelectric properties of BaTiO3 single crystal based on a modified Landau potential. Journal of Applied Physics, 2010, 108(11): 114105
CrossRef Google scholar
[167]
Yu H, Wang J, Kozinov S. . Phase field analysis of crack tip parameters in ferroelectric polycrystals under large-scale switching. Acta Materialia, 2018, 154: 334–342
CrossRef Google scholar
[168]
Huang Y H, Wang J J, Yang T N. . A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1–xSrxTiO3 single crystals. Applied Physics Letters, 2018, 112(10): 102901
CrossRef Google scholar
[169]
Cao G P, Huang H B, Liang D S. . A phenomenological potential and ferroelectric properties of BaTiO3-CaTiO3 solid solution. Ceramics International, 2017, 43(9): 6671–6676
CrossRef Google scholar
[170]
Zhang G Z, Zhang X S, Yang T N. . Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015, 9(7): 7164–7174
CrossRef Google scholar
[171]
Qian J F, Peng R C, Shen Z H. . Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: In situ characterization and phase-field simulation. Advanced Materials, 2019, 31(5): 1801949
[172]
Shi X M, Wang J, Xu J W. . Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics. Acta Materialia, 2022, 237: 118147
CrossRef Google scholar
[173]
Xu S Q, Shi X M, Pan H. . Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Advanced Theory and Simulations, 2022, 5(6): 2100324
CrossRef Google scholar
[174]
Liu Y, Yang T, Zhang B. . Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Advanced Materials, 2020, 32(49): 2005431
CrossRef Google scholar
[175]
Gao R Z, Wang J, Wang J S. . Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801
CrossRef Google scholar
[176]
Wang J, Zhu R X, Ma J. . Photoenhanced electroresistance at dislocation-mediated phase boundary. ACS Applied Materials & Interfaces, 2022, 14(16): 18662–18670
CrossRef Google scholar
[177]
Wang J, Fan Y Y, Song Y. . Microscopic physical origin of polarization induced large tunneling electroresis-tance in tetragonal-phase BiFeO3. Acta Materialia, 2022, 225: 117564
CrossRef Google scholar
[178]
Gu H, Qian X, Li X. . A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102(12): 122904
CrossRef Google scholar
[179]
Plaznik U, Vrabelj M, Kutnjak Z. . Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration. Europhysics Letters, 2015, 111(5): 57009
CrossRef Google scholar
[180]
Qian X S, Yang T N, Zhang T. . Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings. Applied Physics Letters, 2016, 108(14): 142902
CrossRef Google scholar
[181]
Akamatsu H, Yuan Y, Stoica V A. . Light-activated gigahertz ferroelectric domain dynamics. Physical Review Letters, 2018, 120(9): 096101
CrossRef Google scholar
[182]
Yang T, Wang B, Hu J M. . Domain dynamics under ultrafast electric-field pulses. Physical Review Letters, 2020, 124(10): 107601
CrossRef Google scholar
[183]
Shao C C, Shi X M, Wang J. . Designing ultrafast cooling rate for room temperature electrocaloric effects by phase-field simulations. Advanced Theory and Simulations, 2022, 5(10): 2200406
CrossRef Google scholar
[184]
Li Q, Shi J, Han D. . Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190: 116806
CrossRef Google scholar
[185]
Aprea C, Greco A, Maiorino A. . A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. International Journal of Refrigeration, 2016, 69: 369–382
CrossRef Google scholar
[186]
Aprea C, Greco A, Maiorino A. . A two-dimensional model of a solid-state regenerator based on combined electrocaloric-elastocaloric effect. Energy Procedia, 2017, 126: 337–344
CrossRef Google scholar
[187]
ApreaCGreco AMaiorinoA, . Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy, 2018, 165(Part A): 439–455
[188]
Aprea C, Greco A, Maiorino A. . The employment of caloric-effect materials for solid-state heat pumping. International Journal of Refrigeration, 2019, 109: 1–11
[189]
Aprea C, Greco A, Maiorino A. . A numerical investigation on a caloric heat pump employing nanofluids. International Journal of Heat and Technology, 2019, 37(3): 675–681
CrossRef Google scholar
[190]
Gu H, Qian X S, Ye H J. . An electrocaloric refrigerator without external regenerator. Applied Physics Letters, 2014, 105(16): 162905
CrossRef Google scholar
[191]
Zhang T, Qian X S, Gu H M. . An electrocaloric refrigerator with direct solid to solid regeneration. Applied Physics Letters, 2017, 110(24): 243503
CrossRef Google scholar
[192]
Smullin S J, Wang Y, Schwartz D E. System optimization of a heat-switch-based electrocaloric heat pump. Applied Physics Letters, 2015, 107(9): 093903
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51972028) and the State Key Development Program for Basic Research of China (Grant No. 2019YFA0307900).

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(2834 KB)

Accesses

Citations

Detail

Sections
Recommended

/