A review on different theoretical models of electrocaloric effect for refrigeration
Cancan SHAO, A. A. AMIROV, Houbing HUANG
A review on different theoretical models of electrocaloric effect for refrigeration
The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.
electrocaloric effect / effective Hamiltonian / phase-field modeling / different theoretical models
[1] |
Wang J J, Wang B, Chen L Q. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annual Review of Materials Research, 2019, 49(1): 127–152
CrossRef
Google scholar
|
[2] |
KutnjakZRožič BPircR,
|
[3] |
Shi J, Han D, Li Z.
CrossRef
Google scholar
|
[4] |
CorreiaTZhang Q. Electrocaloric effect: An introduction. In: Correia T, Zhang Q, eds. Electrocaloric Materials. Engineering Materials. Berlin, Springer, 2014
|
[5] |
GunnarSOleg PGeraldG. Electrocaloric cooling. In: Orhan E, ed. Refrigeration. IntechOpen, 2017
|
[6] |
Lu S G, Zhang Q M. Electrocaloric materials for solid-state refrigeration. Advanced Materials, 2009, 21(19): 1983–1987
CrossRef
Google scholar
|
[7] |
GranicherH. Induzierte Ferroelektrizitat von SrTiO3 bei sehr tiefen temperatur und uber dieKalterzeugung durch adiabatic Entpolarisierung. 1956
|
[8] |
Hegenbarth E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics, 1961, 1(4): 242–243
CrossRef
Google scholar
|
[9] |
KobekoPKurtschatov J. Dielektrische Eigenschaften der Seignettesalzkristalle. 1930
|
[10] |
Wiseman G G, Kuebler J K. Electrocaloric effect in ferroelectric rochelle salt. Physical Review, 1963, 131(5): 2023–2027
CrossRef
Google scholar
|
[11] |
Scott J F. Electrocaloric materials. Annual Review of Materials Research, 2011, 41(1): 229–240
CrossRef
Google scholar
|
[12] |
Mischenko A S, Zhang Q, Scott J F.
CrossRef
Google scholar
|
[13] |
Neese B, Chu B, Lu S G.
CrossRef
Google scholar
|
[14] |
Moya X, Stern-Taulats E, Crossley S.
CrossRef
Google scholar
|
[15] |
Torelló A, Lheritier P, Usui T.
CrossRef
Google scholar
|
[16] |
SuchaneckGGerlach G. Thin films for electrocaloric cooling devices. In: Kumar S, Aswal D, eds. Recent Advances in Thin Films. Materials Horizons: From Nature to Nanomaterials. Singapore: Springer, 2020
|
[17] |
Aziguli H, Chen X, Liu Y.
CrossRef
Google scholar
|
[18] |
CuiHHeW PeiQ B,
|
[19] |
Ožbolt M, Kitanovski A, Tušek J.
CrossRef
Google scholar
|
[20] |
Honmi H, Hashizume Y, Nakajima T.
CrossRef
Google scholar
|
[21] |
Greco A, Masselli C. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
CrossRef
Google scholar
|
[22] |
MaY BAlbe KXuB X. Monte Carlo simulations of the electrocaloric effect in relaxor ferroelectrics. In: Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 2015
|
[23] |
Ma Y B, Albe K, Xu B X. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(18): 184108
CrossRef
Google scholar
|
[24] |
Beckman S P, Wan L F, Barr J A.
CrossRef
Google scholar
|
[25] |
Tarnaoui M, Zaim M, Kerouad M.
CrossRef
Google scholar
|
[26] |
Barr J A, Beckman S P. Electrocaloric response of KNbO3 from a first-principles effective Hamiltonian. Materials Science and Engineering B, 2015, 196: 40–43
CrossRef
Google scholar
|
[27] |
Ghosez P, Junquera J. Modeling of ferroelectric oxide perovskites: From first to second principles. Annual Review of Condensed Matter Physics, 2022, 13(1): 325–364
CrossRef
Google scholar
|
[28] |
Lee J Y, Soh A K, Chen H T.
CrossRef
Google scholar
|
[29] |
Zhu J, Chen H, Hou X.
CrossRef
Google scholar
|
[30] |
Gao R Z, Shi X M, Wang J.
CrossRef
Google scholar
|
[31] |
Guo D, Gao J, Yu Y J.
CrossRef
Google scholar
|
[32] |
Liebschner R, Gerlad G. 3D-FEM simulation of a MEMS-based electrocaloric Ba(Zr0.2Ti0.8)O3 thin-film microfluidic refrigeration device. Energy Technology: Generation, Conversion, Storage, Distribution, 2018, 6(8): 1553–1559
CrossRef
Google scholar
|
[33] |
Shi J, Li Q, Gao T.
CrossRef
Google scholar
|
[34] |
Torelló A, Defay E. Electrocaloric coolers: A review. Advanced Electronic Materials, 2022, 8(6): 2101031
CrossRef
Google scholar
|
[35] |
Kumar A, Thakre A, Jeong D Y.
CrossRef
Google scholar
|
[36] |
Moya X, Kar-Narayan S, Mathur N. Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450
CrossRef
Google scholar
|
[37] |
He H, Lu X, Hanc E.
CrossRef
Google scholar
|
[38] |
Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
CrossRef
Google scholar
|
[39] |
Aprea C, Greco A, Masselli C.
CrossRef
Google scholar
|
[40] |
Meng Y, Pu J H, Pei Q B. Electrocaloric cooling over high device temperature span. Joule, 2021, 5(4): 780–793
CrossRef
Google scholar
|
[41] |
Völker B, Marton P, Elsässer C.
CrossRef
Google scholar
|
[42] |
Völker B, Landis C M, Kamlah M. Multiscale modeling for ferroelectric materials: Identification of the phase-field model’s free energy for PZT from atomistic simulations. Smart Materials and Structures, 2012, 21(3): 035025
CrossRef
Google scholar
|
[43] |
Zhang J, Hou X, Zhang Y.
CrossRef
Google scholar
|
[44] |
KohnWSham L. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133
|
[45] |
Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
CrossRef
Google scholar
|
[46] |
Zhong W, Vanderbilt D, Rabe K M. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Ferroelectrics, 1998, 206(9): 181–204
CrossRef
Google scholar
|
[47] |
Zhong W, Vanderbilt D, Rabe K M. Phase transitions in BaTiO3 from first principles. Physical Review Letters, 1994, 73(13): 1861–1864
CrossRef
Google scholar
|
[48] |
Tinte S, Stachiotti M G, Sepliarsky M.
CrossRef
Google scholar
|
[49] |
Migoni R. Lattice dynamics of BaTiO3 in the cubic phase. Journal of Physics Condensed Matter, 2010, 405(19): 4226–4230
CrossRef
Google scholar
|
[50] |
Dick B G, Overhauser A W. Theory of the dielectric constants of alkali halide crystals. Physical Review, 1958, 112(1): 90–103
CrossRef
Google scholar
|
[51] |
Thomas N W. A bond-valence approach to one-dimensional ferroelectrics. Ferroelectrics, 1989, 100(1): 77–100
CrossRef
Google scholar
|
[52] |
Brown I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858–6919
CrossRef
Google scholar
|
[53] |
Bellaiche L, García A, Vanderbilt D. Finite-temperature properties of Pb(Zr1–xTix)O3 alloys from first principles. Physical Review Letters, 2000, 84(23): 5427–5430
CrossRef
Google scholar
|
[54] |
Walizer L, Lisenkov S, Bellaiche L. Finite-temperature properties of (Ba, Sr)TiO3 systems from atomistic simulations. Physical Review. B, 2006, 299(14): G1128–G1138
CrossRef
Google scholar
|
[55] |
Bellaiche L, García A, Vanderbilt D. Low-temperature properties of Pb(Zr1−xTix)O3 solid solutions near the morphotropic phase boundary. Ferroelectrics, 2002, 266(1): 41–56
CrossRef
Google scholar
|
[56] |
King-Smith R D, Vanderbilt D. First-principles investigation of ferroelectricity in perovskite compounds. Physical Review B: Condensed Matter, 1994, 49(9): 5828–5844
CrossRef
Google scholar
|
[57] |
Kornev I A, Bellaiche L, Janolin P E.
CrossRef
Google scholar
|
[58] |
Kornev I A, Lisenkov S, Haumont R.
CrossRef
Google scholar
|
[59] |
Bhattacharjee S, Rahmedov D, Wang D W.
CrossRef
Google scholar
|
[60] |
Íñiguez J, Vanderbilt D. First-principle study of the temperature-pressure phase diagram of BaTiO3. Physical Review Letters, 2002, 89(11): 115503
CrossRef
Google scholar
|
[61] |
Kornev I A, Lisenkov S, Haumont R.
CrossRef
Google scholar
|
[62] |
Lines M E, Glass A M, Burns G. Principles and applications of ferroelectrics and related materials. Physics Today, 1978, 31(9): 56–58
CrossRef
Google scholar
|
[63] |
Zhong S, Ban Z G, Alpay S P.
CrossRef
Google scholar
|
[64] |
Mani B K, Lisenkov S, Ponomareva I. Finite-temperature properties of antiferroelectric PbZrO3 from atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134112
CrossRef
Google scholar
|
[65] |
Yang Y, Xu B, Xu C S.
CrossRef
Google scholar
|
[66] |
Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Physical Review B, 2000, 61: 7877
CrossRef
Google scholar
|
[67] |
Ramer N J, Rappe A M. Application of a new virtual crystal approach for the study of disordered perovskites. Journal of Physics and Chemistry of Solids, 2000, 61(2): 315–320
CrossRef
Google scholar
|
[68] |
Rapaport D C. The art of molecular dynamics simulation. Computers in Physics, 1995, 10: 456
CrossRef
Google scholar
|
[69] |
Mani B K, Chang C M, Ponomareva I. Atomistic study of soft-mode dynamics in PbTiO3. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(6): 064306
CrossRef
Google scholar
|
[70] |
Prosandeev S, Ponomareva I, Naumov I.
CrossRef
Google scholar
|
[71] |
Devonshire A F. Theory of ferroelectrics. Advances in Physics, 1954, 3(10): 85–130
CrossRef
Google scholar
|
[72] |
Thomson W. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1878, 5(28): 4–27
CrossRef
Google scholar
|
[73] |
Rožič B, Kosec M, Uršič H.
CrossRef
Google scholar
|
[74] |
Liu Y, Wei J, Janolin P E.
CrossRef
Google scholar
|
[75] |
Wu H H, Zhu J M, Zhang T Y. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Physical Chemistry Chemical Physics, 2015, 17(37): 23897–23908
CrossRef
Google scholar
|
[76] |
Wu H H, Zhu J, Zhang T Y. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419–427
CrossRef
Google scholar
|
[77] |
Peräntie J, Hagberg J, Uusimäki A.
CrossRef
Google scholar
|
[78] |
Geng W P, Yang L, Bellaiche L.
CrossRef
Google scholar
|
[79] |
Lu S G, Tang X G, Wu S H.
CrossRef
Google scholar
|
[80] |
Lu S G, Rozic B, Zhang Q M.
CrossRef
Google scholar
|
[81] |
Pirc R, Kutnjak Z, Blinc R.
CrossRef
Google scholar
|
[82] |
Colla E V, Jurik N, Liu Y.
CrossRef
Google scholar
|
[83] |
Luo L, Dietze M, Solterbeck C H.
CrossRef
Google scholar
|
[84] |
Peng B L, Zhang Q, Gang B.
CrossRef
Google scholar
|
[85] |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method. Progress in Materials Science, 2022, 124: 100868
CrossRef
Google scholar
|
[86] |
Chen L Q. Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002, 32(1): 113–140
CrossRef
Google scholar
|
[87] |
Wu S, Sheng J, Yang C.
CrossRef
Google scholar
|
[88] |
Liu M, Wang J. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports, 2015, 5(1): 7728
CrossRef
Google scholar
|
[89] |
Haun M J, Furman E, Jang S J.
CrossRef
Google scholar
|
[90] |
Chen X, Li S, Jian X.
CrossRef
Google scholar
|
[91] |
Gao R Z, Shi X M, Wang J.
CrossRef
Google scholar
|
[92] |
Sebald G, Seveyrat L, Capsal J F.
CrossRef
Google scholar
|
[93] |
Li X, Qian X S, Lu S G.
CrossRef
Google scholar
|
[94] |
Li Y L, Chen L Q. Temperature-strain phase diagram for BaTiO3 thin films. Applied Physics Letters, 2006, 88(7): 072905
CrossRef
Google scholar
|
[95] |
Bai Y, Ding K, Zheng G P.
CrossRef
Google scholar
|
[96] |
Qian X S, Ye H J, Zhang Y T.
CrossRef
Google scholar
|
[97] |
Akcay G, Alpay S P, Mantese J V.
CrossRef
Google scholar
|
[98] |
Li Z, Li J, Wu H H.
CrossRef
Google scholar
|
[99] |
Okazaki A, Kawaminami M. Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973, 8(5): 545–550
CrossRef
Google scholar
|
[100] |
Nishimatsu T, Iwamoto M, Kawazoe Y.
CrossRef
Google scholar
|
[101] |
Liu C H, Si W, Wu C.
CrossRef
Google scholar
|
[102] |
Lisenkov S, Mani B K, Chang C M.
CrossRef
Google scholar
|
[103] |
Mikhaleva E A, Flerov I N, Gorev M V.
CrossRef
Google scholar
|
[104] |
Zeng X W, Cohen R E. Thermo-electromechanical response of a ferroelectric perovskite from molecular dynamics simulations. Applied Physics Letters, 2011, 99(14): 142902
CrossRef
Google scholar
|
[105] |
Sai N, Rabe K M, Vanderbilt D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Physical Review B: Condensed Matter, 2002, 66(10): 104108
CrossRef
Google scholar
|
[106] |
Pan Z, Wang P, Hou X.
CrossRef
Google scholar
|
[107] |
Wang S, Yi M, Xu B X. A phase-field model of relaxor ferroelectrics based on random field theory. International Journal of Solids and Structures, 2016, 83: 142–153
CrossRef
Google scholar
|
[108] |
Lisenkov S, Mani B, Glazkova E.
CrossRef
Google scholar
|
[109] |
Glazkova-Swedberg E, Cuozzo J, Lisenkov S.
CrossRef
Google scholar
|
[110] |
Kingsland M, Lisenkov S, Ponomareva I. Unveiling electrocaloric potential of antiferroelectrics with phase competition. Advanced Theory and Simulations, 2018, 1(11): 1800096
CrossRef
Google scholar
|
[111] |
Xu K, Shi X M, Dong S Z.
CrossRef
Google scholar
|
[112] |
Tan X, Ma C, Frederick J.
CrossRef
Google scholar
|
[113] |
Liu N T, Liang R H, Zhang G Z.
CrossRef
Google scholar
|
[114] |
Ayyub P, Chattopadhyay S, Pinto R.
CrossRef
Google scholar
|
[115] |
Nishimatsu T, Barr J A, Beckman S P. Direct molecular dynamics simulation of electrocaloric effect in BaTiO3. Journal of the Physical Society of Japan, 2013, 82(11): 114605
CrossRef
Google scholar
|
[116] |
Rožič B, Malič B, Uršič H.
CrossRef
Google scholar
|
[117] |
Zhang J T, Hou X, Wang J. Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics: Condensed Matter, 2019, 31: 255402
CrossRef
Google scholar
|
[118] |
Marathe M, Grünebohm A, Nishimatsu T.
CrossRef
Google scholar
|
[119] |
Joffé A F. Mechanical and electrical strength and cohesion. Transactions of the Faraday Society, 1928, 24: 65–72
CrossRef
Google scholar
|
[120] |
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506–509
CrossRef
Google scholar
|
[121] |
Glazkova E, Chang C M, Lisenkov S.
CrossRef
Google scholar
|
[122] |
Bin-Omran S, Kornev I, Ponomareva I.
CrossRef
Google scholar
|
[123] |
Mani B K, Chang C M, Lisenkov S.
CrossRef
Google scholar
|
[124] |
Ponomareva I, Naumov I I, Kornev I.
CrossRef
Google scholar
|
[125] |
Fu H, Bellaiche L. Ferroelectricity in barium titanate quantum dots and wires. Physical Review Letters, 2003, 91(25): 257601
CrossRef
Google scholar
|
[126] |
Liu D, Wang J, Jafri H M.
CrossRef
Google scholar
|
[127] |
Zhu W X, Shi X M, Gao R Z.
CrossRef
Google scholar
|
[128] |
Bin-Omran S. The influence of mechanical and electrical boundary conditions on electrocaloric response in (Ba0.50Sr0.50)TiO3 thin films. Materials Research Bulletin, 2017, 95: 334–338
CrossRef
Google scholar
|
[129] |
Wang J, Kamlah M. Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics, 2010, 77(18): 3658–3669
CrossRef
Google scholar
|
[130] |
Li Y L, Hu S Y, Liu Z K.
CrossRef
Google scholar
|
[131] |
Marathe M, Ederer C. Electrocaloric effect in BaTiO3: A first-principles-based study on the effect of misfit strain. Applied Physics Letters, 2014, 104(21): 212902
CrossRef
Google scholar
|
[132] |
Akcay G, Alpay S P, Rossetti G A Jr.
CrossRef
Google scholar
|
[133] |
Wang J, Ma J, Huang H B.
CrossRef
Google scholar
|
[134] |
Zhang J, Heitmann A A, Alpay S P.
CrossRef
Google scholar
|
[135] |
Qiu J, Jiang Q. Effect of misfit strain on the electrocaloric effect in epitaxial SrTiO3 thin films. European Physical Journal B, 2009, 71(1): 15–19
CrossRef
Google scholar
|
[136] |
Karthik J, Martin L W. Effect of domain walls on the electrocaloric properties of Pb(Zr1–xTix)O3 thin films. Applied Physics Letters, 2011, 99(3): 032904
CrossRef
Google scholar
|
[137] |
Wang J J, Fortino D, Wang B.
CrossRef
Google scholar
|
[138] |
Li B, Wang J B, Zhong X L.
CrossRef
Google scholar
|
[139] |
Wang F, Li B, Ou Y.
CrossRef
Google scholar
|
[140] |
Li B, Wang J B, Zhong X L.
CrossRef
Google scholar
|
[141] |
Wang F, Li B, Ou Y.
CrossRef
Google scholar
|
[142] |
Huang C, Yang H B, Gao C F. Giant electrocaloric effect in a cracked ferroelectric. Journal of Applied Physics, 2018, 123(15): 154102
CrossRef
Google scholar
|
[143] |
Van Lich L, Hou X, Phan M H.
CrossRef
Google scholar
|
[144] |
Ji Y, Chen W J, Zheng Y. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics. D, Applied Physics, 2020, 53(50): 505302
CrossRef
Google scholar
|
[145] |
Huang D, Wang J B, Li B.
CrossRef
Google scholar
|
[146] |
Wang J, Liu M, Zhang Y.
CrossRef
Google scholar
|
[147] |
Hou X, Wu H P, Li H Y.
CrossRef
Google scholar
|
[148] |
Li B, Wang J B, Zhong X L.
CrossRef
Google scholar
|
[149] |
Zeng Y K, Li B, Wang J B.
CrossRef
Google scholar
|
[150] |
Ye C, Wang J B, Li B.
CrossRef
Google scholar
|
[151] |
Van Lich L, Vu N L, Ha M T.
CrossRef
Google scholar
|
[152] |
Li B, Wang J B, Zhong X L.
CrossRef
Google scholar
|
[153] |
Sluka T, Tagantsev A, Damjanovic D.
CrossRef
Google scholar
|
[154] |
Ondrejkovic P, Marton P, Guennou M.
CrossRef
Google scholar
|
[155] |
Hou X, Li X, Zhang J.
CrossRef
Google scholar
|
[156] |
Chen X, Fang C. Study of electrocaloric effect in barium titanate nanoparticle with core-shell model. Physica B: Condensed Matter, 2013, 415: 14–17
CrossRef
Google scholar
|
[157] |
Qiu J H, Jiang Q. Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. Journal of Applied Physics, 2009, 105(3): 034110
CrossRef
Google scholar
|
[158] |
Morozovska A N, Eliseev E A, Glinchuk M D.
CrossRef
Google scholar
|
[159] |
Patel S, Kumar M. Influence of grain size on the electrocaloric and pyroelectric properties in non-reducible BaTiO3 ceramics. AIP Advances, 2020, 10(8): 085302
CrossRef
Google scholar
|
[160] |
Das S, Tang Y L, Hong Z.
CrossRef
Google scholar
|
[161] |
Li Q, Stoica V A, Paściak M.
CrossRef
Google scholar
|
[162] |
Wang Y J, Feng Y P, Zhu Y L.
CrossRef
Google scholar
|
[163] |
Abid A Y, Sun Y, Hou X.
CrossRef
Google scholar
|
[164] |
Huang H, Zhang G, Ma X.
CrossRef
Google scholar
|
[165] |
Ishidate T, Abe S, Takahashi H.
CrossRef
Google scholar
|
[166] |
Wang J J, Wu P P, Ma X Q.
CrossRef
Google scholar
|
[167] |
Yu H, Wang J, Kozinov S.
CrossRef
Google scholar
|
[168] |
Huang Y H, Wang J J, Yang T N.
CrossRef
Google scholar
|
[169] |
Cao G P, Huang H B, Liang D S.
CrossRef
Google scholar
|
[170] |
Zhang G Z, Zhang X S, Yang T N.
CrossRef
Google scholar
|
[171] |
Qian J F, Peng R C, Shen Z H.
|
[172] |
Shi X M, Wang J, Xu J W.
CrossRef
Google scholar
|
[173] |
Xu S Q, Shi X M, Pan H.
CrossRef
Google scholar
|
[174] |
Liu Y, Yang T, Zhang B.
CrossRef
Google scholar
|
[175] |
Gao R Z, Wang J, Wang J S.
CrossRef
Google scholar
|
[176] |
Wang J, Zhu R X, Ma J.
CrossRef
Google scholar
|
[177] |
Wang J, Fan Y Y, Song Y.
CrossRef
Google scholar
|
[178] |
Gu H, Qian X, Li X.
CrossRef
Google scholar
|
[179] |
Plaznik U, Vrabelj M, Kutnjak Z.
CrossRef
Google scholar
|
[180] |
Qian X S, Yang T N, Zhang T.
CrossRef
Google scholar
|
[181] |
Akamatsu H, Yuan Y, Stoica V A.
CrossRef
Google scholar
|
[182] |
Yang T, Wang B, Hu J M.
CrossRef
Google scholar
|
[183] |
Shao C C, Shi X M, Wang J.
CrossRef
Google scholar
|
[184] |
Li Q, Shi J, Han D.
CrossRef
Google scholar
|
[185] |
Aprea C, Greco A, Maiorino A.
CrossRef
Google scholar
|
[186] |
Aprea C, Greco A, Maiorino A.
CrossRef
Google scholar
|
[187] |
ApreaCGreco AMaiorinoA,
|
[188] |
Aprea C, Greco A, Maiorino A.
|
[189] |
Aprea C, Greco A, Maiorino A.
CrossRef
Google scholar
|
[190] |
Gu H, Qian X S, Ye H J.
CrossRef
Google scholar
|
[191] |
Zhang T, Qian X S, Gu H M.
CrossRef
Google scholar
|
[192] |
Smullin S J, Wang Y, Schwartz D E. System optimization of a heat-switch-based electrocaloric heat pump. Applied Physics Letters, 2015, 107(9): 093903
CrossRef
Google scholar
|
/
〈 | 〉 |