CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors
Received date: 18 Feb 2023
Accepted date: 06 May 2023
Published date: 15 Aug 2023
Copyright
Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.
Shixian XIONG , Hongcheng KE , Lei CAO , Yu WANG , Qian ZHU , Liqin ZHONG , Lanlan FAN , Feng GU . CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors[J]. Frontiers in Energy, 2023 , 17(4) : 555 -566 . DOI: 10.1007/s11708-023-0882-8
1 |
Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices. InfoMat, 2020, 2(1): 113–125
|
2 |
Fu Q, Hao S, Zhang X.
|
3 |
Ock I W, Lee J, Kang J K. Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors. Advanced Energy Materials, 2020, 10(48): 2001851
|
4 |
Mennel J A, Chidambaram D. A review on the development of electrolytes for lithium-based batteries for low temperature applications. Frontiers in Energy, 2023, 17(1): 43–71
|
5 |
Jiang D, Li C, Yang W.
|
6 |
Tang H, Yao J J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Advanced Energy Materials, 2021, 11(14): 2003994
|
7 |
Xie C, Li Y, Wang Q.
|
8 |
Hu C, Wu A, Zhu F.
|
9 |
Choudhary N, Li C, Moore J L.
|
10 |
Zou K, Cai P, Liu C.
|
11 |
Chen J, Yang B, Hou H.
|
12 |
Han P, Xu G, Han X.
|
13 |
Wu N, Yao W, Song X.
|
14 |
Ma X, Cheng J, Dong L.
|
15 |
Dubey R J, Colijn T, Aebli M.
|
16 |
Song M, Tan H, Chao D.
|
17 |
Su L, Liu L, Liu B.
|
18 |
Tang B, Shan L, Liang S.
|
19 |
Han L, Huang H, Fu X.
|
20 |
Pu J, Cao Q, Gao Y.
|
21 |
Xu X, Tang J, Qian H.
|
22 |
Wang Y, Jiang H, Zheng R.
|
23 |
Borges J, Rodrigues L C, Reis R L.
|
24 |
Hu L, Wan Y, Zhang Q.
|
25 |
Li C, Zheng C, Cao F.
|
26 |
Liang Z, Tu H, Shi D.
|
27 |
Wang X, Feng Z, Hou X.
|
28 |
Xu Y, Jiang J, Li Z.
|
29 |
Yang J, Zhai Y, Zhang X.
|
30 |
Tabassum H, Zou R, Mahmood A.
|
31 |
Tabassum H, Guo W, Meng W.
|
32 |
Tabassum H, Qu C, Cai K.
|
33 |
Fu N, Liu Y, Liu R.
|
34 |
Shi L, Ye J, Lu H.
|
35 |
Cong Z, Guo W, Zhang P.
|
36 |
Cao L, Wang Y, Zhu Q.
|
37 |
Wang S, Ma F, Jiang H.
|
38 |
Yang M, Shi D, Sun X.
|
39 |
Gu D, Ding C, Qin Y.
|
40 |
Li X, Li Y, Xie S.
|
41 |
Cao L, Zhou X, Li Z.
|
42 |
Liao X, Pan C, Yan H.
|
43 |
Li W, Gao F, Wang X.
|
44 |
Wang D W, Li F, Chen Z G.
|
45 |
Huang Z, Wang T, Song H.
|
46 |
Yang J, Bissett M A, Dryfe R A W. Investigation of coltage range and self-discharge in aqueous zinc-ion hybrid supercapacitors. ChemSusChem, 2021, 14(7): 1700–1709
|
47 |
Huang Z, Chen A, Mo F.
|
48 |
Song T, Hao H, Zhao Y.
|
49 |
Ruan P, Xu X, Gao X.
|
50 |
Luo Y, Guo R, Li T.
|
51 |
Ghosh K, Yue C Y, Sk M M.
|
52 |
Shen Y, Qin Z, Hu S Y.
|
53 |
Cui F Z, Liu Z, Ma D L.
|
54 |
Wang Q, Wang S, Guo X.
|
55 |
Huang Z, Zhang R, Zhang S.
|
56 |
Liang G, Li X, Wang Y.
|
57 |
Xu L, Pan G, Yu C.
|
58 |
Li Y, Yang W, Huang Y.
|
59 |
Luo P, Xiao Y, Yang J.
|
60 |
Chen L, Xu X, Wan L.
|
61 |
Lu Y, Li Z, Bai Z.
|
62 |
Dong L, Ma X, Li Y.
|
63 |
Han J, Wang K, Liu W.
|
64 |
Yao M, Yuan Z, Li S.
|
65 |
Chen L, Fu J, Lu Q.
|
66 |
Dong L, Yang W, Yang W.
|
/
〈 | 〉 |