CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors
Shixian XIONG, Hongcheng KE, Lei CAO, Yu WANG, Qian ZHU, Liqin ZHONG, Lanlan FAN, Feng GU
CC@BCN@PANI core-shell nanoarrays as ultra-high cycle stability cathode for Zn-ion hybrid supercapacitors
Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors (ZHSCs). Herein, polyaniline (PANI) coated boron-carbon-nitrogen (BCN) nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods. Because of the excellent specific capacity and conductivity of PANI, the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability. Moreover, the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles, which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI. Therefore, the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g, a high energy density of 116.78 Wh/kg, an excellent power density of 12 kW/kg, and a capacity retention rate of 86.2% after 8000 charge/discharge cycles at a current density of 2 A/g. In addition, the flexible ZHSCs (FZHSCs) also show a capacity retention rate of 87.7% at the current density of 2 A/g after 450 cycles.
CC@BCN@PANI cathode / Zn-ion hybrid supercapacitor / core-shell nanoarrays / high energy density / ultra-high cycle stability
[1] |
Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices. InfoMat, 2020, 2(1): 113–125
CrossRef
Google scholar
|
[2] |
Fu Q, Hao S, Zhang X.
CrossRef
Google scholar
|
[3] |
Ock I W, Lee J, Kang J K. Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors. Advanced Energy Materials, 2020, 10(48): 2001851
CrossRef
Google scholar
|
[4] |
Mennel J A, Chidambaram D. A review on the development of electrolytes for lithium-based batteries for low temperature applications. Frontiers in Energy, 2023, 17(1): 43–71
CrossRef
Google scholar
|
[5] |
Jiang D, Li C, Yang W.
CrossRef
Google scholar
|
[6] |
Tang H, Yao J J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Advanced Energy Materials, 2021, 11(14): 2003994
CrossRef
Google scholar
|
[7] |
Xie C, Li Y, Wang Q.
CrossRef
Google scholar
|
[8] |
Hu C, Wu A, Zhu F.
CrossRef
Google scholar
|
[9] |
Choudhary N, Li C, Moore J L.
CrossRef
Google scholar
|
[10] |
Zou K, Cai P, Liu C.
CrossRef
Google scholar
|
[11] |
Chen J, Yang B, Hou H.
CrossRef
Google scholar
|
[12] |
Han P, Xu G, Han X.
CrossRef
Google scholar
|
[13] |
Wu N, Yao W, Song X.
CrossRef
Google scholar
|
[14] |
Ma X, Cheng J, Dong L.
CrossRef
Google scholar
|
[15] |
Dubey R J, Colijn T, Aebli M.
CrossRef
Google scholar
|
[16] |
Song M, Tan H, Chao D.
CrossRef
Google scholar
|
[17] |
Su L, Liu L, Liu B.
CrossRef
Google scholar
|
[18] |
Tang B, Shan L, Liang S.
CrossRef
Google scholar
|
[19] |
Han L, Huang H, Fu X.
CrossRef
Google scholar
|
[20] |
Pu J, Cao Q, Gao Y.
CrossRef
Google scholar
|
[21] |
Xu X, Tang J, Qian H.
CrossRef
Google scholar
|
[22] |
Wang Y, Jiang H, Zheng R.
CrossRef
Google scholar
|
[23] |
Borges J, Rodrigues L C, Reis R L.
CrossRef
Google scholar
|
[24] |
Hu L, Wan Y, Zhang Q.
CrossRef
Google scholar
|
[25] |
Li C, Zheng C, Cao F.
CrossRef
Google scholar
|
[26] |
Liang Z, Tu H, Shi D.
CrossRef
Google scholar
|
[27] |
Wang X, Feng Z, Hou X.
CrossRef
Google scholar
|
[28] |
Xu Y, Jiang J, Li Z.
CrossRef
Google scholar
|
[29] |
Yang J, Zhai Y, Zhang X.
CrossRef
Google scholar
|
[30] |
Tabassum H, Zou R, Mahmood A.
CrossRef
Google scholar
|
[31] |
Tabassum H, Guo W, Meng W.
CrossRef
Google scholar
|
[32] |
Tabassum H, Qu C, Cai K.
|
[33] |
Fu N, Liu Y, Liu R.
CrossRef
Google scholar
|
[34] |
Shi L, Ye J, Lu H.
CrossRef
Google scholar
|
[35] |
Cong Z, Guo W, Zhang P.
CrossRef
Google scholar
|
[36] |
Cao L, Wang Y, Zhu Q.
CrossRef
Google scholar
|
[37] |
Wang S, Ma F, Jiang H.
CrossRef
Google scholar
|
[38] |
Yang M, Shi D, Sun X.
CrossRef
Google scholar
|
[39] |
Gu D, Ding C, Qin Y.
CrossRef
Google scholar
|
[40] |
Li X, Li Y, Xie S.
CrossRef
Google scholar
|
[41] |
Cao L, Zhou X, Li Z.
CrossRef
Google scholar
|
[42] |
Liao X, Pan C, Yan H.
CrossRef
Google scholar
|
[43] |
Li W, Gao F, Wang X.
CrossRef
Google scholar
|
[44] |
Wang D W, Li F, Chen Z G.
CrossRef
Google scholar
|
[45] |
Huang Z, Wang T, Song H.
CrossRef
Google scholar
|
[46] |
Yang J, Bissett M A, Dryfe R A W. Investigation of coltage range and self-discharge in aqueous zinc-ion hybrid supercapacitors. ChemSusChem, 2021, 14(7): 1700–1709
CrossRef
Google scholar
|
[47] |
Huang Z, Chen A, Mo F.
CrossRef
Google scholar
|
[48] |
Song T, Hao H, Zhao Y.
CrossRef
Google scholar
|
[49] |
Ruan P, Xu X, Gao X.
CrossRef
Google scholar
|
[50] |
Luo Y, Guo R, Li T.
CrossRef
Google scholar
|
[51] |
Ghosh K, Yue C Y, Sk M M.
CrossRef
Google scholar
|
[52] |
Shen Y, Qin Z, Hu S Y.
CrossRef
Google scholar
|
[53] |
Cui F Z, Liu Z, Ma D L.
CrossRef
Google scholar
|
[54] |
Wang Q, Wang S, Guo X.
CrossRef
Google scholar
|
[55] |
Huang Z, Zhang R, Zhang S.
CrossRef
Google scholar
|
[56] |
Liang G, Li X, Wang Y.
CrossRef
Google scholar
|
[57] |
Xu L, Pan G, Yu C.
CrossRef
Google scholar
|
[58] |
Li Y, Yang W, Huang Y.
|
[59] |
Luo P, Xiao Y, Yang J.
CrossRef
Google scholar
|
[60] |
Chen L, Xu X, Wan L.
CrossRef
Google scholar
|
[61] |
Lu Y, Li Z, Bai Z.
CrossRef
Google scholar
|
[62] |
Dong L, Ma X, Li Y.
CrossRef
Google scholar
|
[63] |
Han J, Wang K, Liu W.
CrossRef
Google scholar
|
[64] |
Yao M, Yuan Z, Li S.
CrossRef
Google scholar
|
[65] |
Chen L, Fu J, Lu Q.
CrossRef
Google scholar
|
[66] |
Dong L, Yang W, Yang W.
CrossRef
Google scholar
|
/
〈 | 〉 |