Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues
Received date: 09 Feb 2021
Accepted date: 09 Apr 2021
Published date: 15 Sep 2021
Copyright
Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.
Taya (Ko) SAOTHAYANUN, Thipwipa (Tip) SIRINAKORN, Makoto OGAWA. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues[J]. Frontiers in Energy, 2021, 15(3): 631-655. DOI: 10.1007/s11708-021-0776-6
1 |
Wang L, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chemical Reviews, 2014, 114(19): 9455–9486
|
2 |
Ogawa M, Saito K, Sohmiya M. A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions (Cambridge, England), 2014, 43(27): 10340–10354
|
3 |
Hong Z, Wei M. Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(14): 4403–4414
|
4 |
Chen C, Sewvandi G A, Kusunose T,
|
5 |
Okada T, Ide Y, Ogawa M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry, an Asian Journal, 2012, 7(9): 1980–1992
|
6 |
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
|
7 |
Ide Y, Sadakane M, Sano T,
|
8 |
Kim I Y, Jo Y K, Lee J M,
|
9 |
Sasaki T, Watanabe M, Komatsu Y,
|
10 |
Dion M, Piffard Y, Tournoux M. The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry, 1978, 40(5): 917–918
|
11 |
Izawa H, Kikkawa S, Koizumi M. Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron, 1983, 2(8): 741–744
|
12 |
Miyamoto N, Kuroda K, Ogawa M. Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. Journal of Materials Chemistry, 2004, 14(2): 165–170
|
13 |
Allen M R, Thibert A, Sabio E M,
|
14 |
Anderson M W, Klinowski J. Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29(17): 3260–3263
|
15 |
Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of Chemical Research, 2015, 48(1): 136–143
|
16 |
Xiong Z, Zhao X S. Preparation of layered titanate with interlayer cadmium sulfide particles for visible-light-assisted dye degradation. RSC Advances, 2014, 4(106): 61960–61967
|
17 |
Sehati S, Entezari M H. Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. Journal of Colloid and Interface Science, 2016, 462: 130–139
|
18 |
Andersson S, Wadsley A D. The crystal structure of Na2Ti3O7. Acta Crystallographica, 1961, 14(12): 1245–1249
|
19 |
Andersson S, Wadsley A D, Nilsson R,
|
20 |
Grey I E, Madsen I C, Watts J A,
|
21 |
Andersson S, Wadsley A D. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica, 1962, 15(3): 194–201
|
22 |
Berry K L, Aftandilian V D, Gilbert W W,
|
23 |
Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982, 86(25): 5023–5026
|
24 |
Kwiatkowska J, Grey I E, Madsen I C,
|
25 |
Bursill L A, Smith D J, Kwiatkowska J. Identifying characteristics of the fibrous cesium titanate Cs2Ti5O11. Journal of Solid State Chemistry, 1987, 69(2): 360–368
|
26 |
Fujiki Y. Growth of mixed fibers of potassium-tetratitanate and-dititanate by slow-cooling calcination method. Journal of the Ceramic Association, Japan, 1982, 90(1046): 624–626
|
27 |
Kajiwara M. The formation of potassium titanate fibre with flux methods. Journal of Materials Science, 1987, 22(4): 1223–1227
|
28 |
Lee J K, Lee K H, Kim H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. Journal of Materials Science, 1996, 31(20): 5493–5498
|
29 |
Izawa H, Kikkawa S, Koizumi M. Hydrothermal synthesis of sodium trititanate and preparation of fibrous H2Ti3O7. Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33(7): 353–355
|
30 |
Masaki N, Uchida S, Yamane H,
|
31 |
Kitano M, Wada E, Nakajima K,
|
32 |
Ma R, Fukuda K, Sasaki T,
|
33 |
Lan Y, Gao X, Zhu H,
|
34 |
Thennarasu S, Rajasekar K, Balkis Ameen K. Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. Journal of Molecular Structure, 2013, 1049: 446–457
|
35 |
Sakurai Y, Yoshida T. Synthesis of K2Ti4O9 by the hydrolysis of KOH-Ti(iso-C3H7O)4 ethanol solution. Journal of the Ceramic Society of Japan, 1991, 99(1146): 105–107
|
36 |
Yang J, Li D, Wang X,
|
37 |
Bao N, Feng X, Shen L,
|
38 |
Bao N, Shen L, Feng X,
|
39 |
Yakubovich O V, Kireev V V. Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 2003, 48(1): 24–28
|
40 |
Fujiki Y, Ohta N. The flux growth reactions of potassium tetratitanate (K2Ti4O9) fibers. Journal of the Ceramic Association, Japan, 1980, 88(1015): 111–116
|
41 |
Bavykin D V, Parmon V N, Lapkin A A,
|
42 |
Gao T, Fjellvåg H, Norby P. Crystal structures of titanate nanotubes: a Raman scattering study. Inorganic Chemistry, 2009, 48(4): 1423–1432
|
43 |
Yang D, Zheng Z, Yuan Y,
|
44 |
Feng M, You W, Wu Z,
|
45 |
Magalhães Nunes L, Gouveia de Souza A, Fernandes de Farias R. Synthesis of new compounds involving layered titanates and niobates with copper(II). Journal of Alloys and Compounds, 2001, 319(1–2): 94–99
|
46 |
Yang D, Zheng Z, Liu H,
|
47 |
Li G, Zhang L, Fang M. Facile fabrication of sodium titanate nanostructures using metatitanic acid (TiO2⋅H2O) and its adsorption property. Journal of Nanomaterials, 2012: 875295
|
48 |
Li N, Zhang L, Chen Y,
|
49 |
Wang T, Liu W, Xiong L,
|
50 |
Liu W, Sun W, Han Y,
|
51 |
Vithal M, Rama Krishna S, Ravi G,
|
52 |
Gu X, Chen F, Zhao B,
|
53 |
Ikenaga K, Kurokawa H, Ohshima M A,
|
54 |
Liu W, Zhao X, Wang T,
|
55 |
Izawa H, Kikkawa S, Koizumi M. Cation exchange selectivity of layered titanates, H2Ti3O7. Journal of Solid State Chemistry, 1985, 60(2): 264–267
|
56 |
Sasaki T, Komatsu Y, Fujiki Y. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4(4): 894–899
|
57 |
Komatsu Y, Fujiki Y, Sasaki T. Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions. Bunseki Kagaku, 1982, 31(7): E225–E229
|
58 |
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K. Bunseki Kagaku, 1984, 33(5): E159–E162
|
59 |
Komatsu Y, Fujiki Y, Sasaki T. Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers. Bunseki Kagaku, 1983, 32(2): E33–E39
|
60 |
Szirmai P, Stevens J, Horváth E,
|
61 |
Song X, Yang E, Zheng Y. Synthesis of MxHyTi3O7 nanotubes by simple ion-exchanged process and their adsorption property. Chinese Science Bulletin, 2007, 52(18): 2491–2495
|
62 |
Torrente-Murciano L, Lapkin A A, Bavykin D V,
|
63 |
Chang T H. Synthesis and characterization of europium-exchanged titanate nanoporous phosphors. Journal of the Chinese Chemical Society (Taipei), 2016, 63(2): 233–238
|
64 |
Huang J, Cao Y, Liu Z,
|
65 |
Izawa H, Kikkawa S, Koizumi M. Europium3+ and terbium3+ intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9.H2O using ion-exchange reaction. Nippon Kagaku Kaishi, 1987, 3(3): 397–399
|
66 |
Izawa H, Kikkawa S, Koizumi M. Effect of intercalated alkylammonium on cation exchange properties of H2Ti3O7. Journal of Solid State Chemistry, 1987, 69(2): 336–342
|
67 |
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of cobalt(II) ions on crystalline hydrous titanium dioxide fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59(1): 49–52
|
68 |
Sasaki T, Komatsu Y, Fujiki Y. Distribution coefficients of lanthanide elements and some separations on layered hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 1986, 107(2): 111–119
|
69 |
Sasaki T, Komatsu Y, Fujiki Y. Formation and characterization of layered lithium titanate hydrate. Materials Research Bulletin, 1987, 22(10): 1321–1328
|
70 |
Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946
|
71 |
Saothayanun T K, Sirinakorn T T, Ogawa M. Ion exchange of layered alkali titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with alkali halides by the solid-state reactions at room temperature. Inorganic Chemistry, 2020, 59(6): 4024–4029
|
72 |
Kim Y I, Salim S, Huq M J,
|
73 |
Miyata H, Sugahara Y, Kuroda K,
|
74 |
Kaito R, Miyamoto N, Kuroda K,
|
75 |
Miyamoto N, Kuroda K, Ogawa M. Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. Journal of Physical Chemistry B, 2004, 108(14): 4268–4274
|
76 |
Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, 11(11): 1262
|
77 |
(Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials: concepts, methods and functions. Bulletin of the Chemical Society of Japan, 2021, 94(2): 678–693
|
78 |
Ogawa M, Takizawa Y. Intercalation of tris(2, 2'-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry B, 1999, 103(24): 5005–5009
|
79 |
Ogawa M, Takizawa Y. One pot synthesis of layered tetratitanate-organic intercalation compounds with the aid of macrocyclic compounds. Molecular Crystals and Liquid Crystals Science and Technology Section A, Molecular Crystals and Liquid Crystals, 2000, 341(2): 357–362
|
80 |
Hsu C Y, Chiu T C, Shih M H,
|
81 |
Marques T M F, Ferreira O P, da Costa J A P,
|
82 |
Machida M, Ma X, Taniguchi H,
|
83 |
Jiang F, Zheng Z, Xu Z,
|
84 |
Uchida S, Yamamoto Y, Fujishiro Y,
|
85 |
Ogura S, Kohno M, Sato K,
|
86 |
Harsha N, Krishna K V S, Renuka N K,
|
87 |
Lin B, Zhou Y, He L,
|
88 |
Feist T P, Davies P K. The soft chemical synthesis of TiO2 (B) from layered titanates. Journal of Solid State Chemistry, 1992, 101(2): 275–295
|
89 |
Zhu H Y, Lan Y, Gao X P,
|
90 |
Zou C, Zhao X, Xu Y. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water. Dalton Transactions (Cambridge, England), 2018, 47(14): 4909–4915
|
91 |
Sirinakorn T T, Bureekaew S, Ogawa M. Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92(1): 1–6
|
92 |
Tip Sirinakorn T, Bureekaew S, Ogawa M. Highly efficient indium(III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018, 2018(34): 3835–3839
|
93 |
Shibata M, Kudo A, Tanaka A,
|
94 |
Kudo A, Kondo T. Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6). Journal of Materials Chemistry, 1997, 7: 777–780
|
95 |
Esmat M, Farghali A A, El-Dek S I,
|
96 |
Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. Journal of Physical Chemistry C, 2008, 112(45): 17678–17682
|
97 |
Lin C H, Chao J H, Tsai W J,
|
98 |
Hong S W, Kim A, Choi J H,
|
99 |
Ogawa M, Morita M, Igarashi S,
|
100 |
Escobedo Bretado M A, González Lozano M A, Collins Martínez V,
|
101 |
Yoshida H, Takeuchi M, Sato M,
|
102 |
Soontornchaiyakul W, Fujimura T, Yano N,
|
103 |
Khan S, Ikari H, Suzuki N,
|
104 |
Liu G, Wang L, Sun C,
|
105 |
Esmat M, El-Hosainy H, Tahawy R,
|
106 |
Li P, Cao Q, Zheng D,
|
107 |
Chen W, Dosado A G, Chan A,
|
108 |
Wang C, Zhang X, Zhang Y,
|
109 |
Wang C, Zhang X, Wei Y,
|
110 |
Li Y, Wang C, Song M,
|
111 |
Liu H, Lin B, He L,
|
112 |
Cui W, Ma S, Liu L,
|
113 |
Camposeco R, Castillo S, Rodriguez-González V,
|
114 |
Yousef A, Barakat N A M, Khalil K A,
|
115 |
Nirmala R, Kim H Y, Yi C, Barakat N A M,
|
116 |
Simagina V I, Komova O V, Ozerova A M,
|
117 |
Zaki A H, Shalan A E, El-Shafeay A,
|
118 |
Barakat N A M, Zaki A H, Ahmed E,
|
119 |
Wu Y, Sun Y, Fu W,
|
120 |
Park H, Ou H H, Colussi A J,
|
121 |
Wei Z, Kowalska E, Wang K,
|
122 |
Li Q, Kako T, Ye J. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36(8): 4716–4723
|
123 |
Ide Y, Shirae W, Takei T,
|
124 |
Ding J, Ming J, Lu D,
|
125 |
Xue J, Long L, Zhang L,
|
126 |
Dosado A G, Chen W, Chan A,
|
127 |
Wang H, Hu X, Ma Y,
|
128 |
Dostanić J, Lončarević D, Pavlović V B,
|
129 |
Huang J, Jiang Y, Li G,
|
130 |
Majeed I, Nadeem M A, Kanodarwala F K,
|
131 |
Crake A, Christoforidis K C, Gregg A,
|
132 |
Li J, Tang Z, Zhang Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005, 7(1): 62–67
|
133 |
Chiba K, Kijima N, Takahashi Y,
|
134 |
Senguttuvan P, Rousse G, Seznec V,
|
/
〈 |
|
〉 |