Front. Energy All Journals
REVIEW ARTICLE

Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues

  • Taya (Ko) SAOTHAYANUN 1 ,
  • Thipwipa (Tip) SIRINAKORN 2 ,
  • Makoto OGAWA , 1
Expand
  • 1. School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
  • 2. School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand

Received date: 09 Feb 2021

Accepted date: 09 Apr 2021

Published date: 15 Sep 2021

Copyright

2021 Higher Education Press

Abstract

Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.

Cite this article

Taya (Ko) SAOTHAYANUN, Thipwipa (Tip) SIRINAKORN, Makoto OGAWA. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues[J]. Frontiers in Energy, 2021, 15(3): 631-655. DOI: 10.1007/s11708-021-0776-6

Acknowledgments

This work was supported by the Research Chair Grant 2017 (Grant No. FDA-CO-2560-5655) from the National Science and Technology Development Agency (NSTDA), Thailand, the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, NXPO (B05F630117), Thailand, and the MEXT Promotion of Distinctive Joint Research Center Program (Grant No. JPMXP0618217662).
1
Wang L, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chemical Reviews, 2014, 114(19): 9455–9486

DOI

2
Ogawa M, Saito K, Sohmiya M. A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions (Cambridge, England), 2014, 43(27): 10340–10354

DOI

3
Hong Z, Wei M. Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(14): 4403–4414

DOI

4
Chen C, Sewvandi G A, Kusunose T, Synthesis of {010}-faceted anatase TiO2 nanoparticles from layered titanate for dye-sensitized solar cells. CrystEngComm, 2014, 16(37): 8885–8895

DOI

5
Okada T, Ide Y, Ogawa M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry, an Asian Journal, 2012, 7(9): 1980–1992

DOI

6
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

DOI

7
Ide Y, Sadakane M, Sano T, Functionalization of layered titanates. Journal of Nanoscience and Nanotechnology, 2014, 14(3): 2135–2147

DOI

8
Kim I Y, Jo Y K, Lee J M, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. Journal of Physical Chemistry Letters, 2014, 5(23): 4149–4161

DOI

9
Sasaki T, Watanabe M, Komatsu Y, Layered hydrous titanium dioxide: potassium ion exchange and structural characterization. Inorganic Chemistry, 1985, 24(14): 2265–2271

DOI

10
Dion M, Piffard Y, Tournoux M. The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry, 1978, 40(5): 917–918

DOI

11
Izawa H, Kikkawa S, Koizumi M. Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron, 1983, 2(8): 741–744

DOI

12
Miyamoto N, Kuroda K, Ogawa M. Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. Journal of Materials Chemistry, 2004, 14(2): 165–170

DOI

13
Allen M R, Thibert A, Sabio E M, Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A= K, H) and in nanosheets derived by chemical exfoliation. Chemistry of Materials, 2010, 22(3): 1220–1228

DOI

14
Anderson M W, Klinowski J. Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29(17): 3260–3263

DOI

15
Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of Chemical Research, 2015, 48(1): 136–143

DOI

16
Xiong Z, Zhao X S. Preparation of layered titanate with interlayer cadmium sulfide particles for visible-light-assisted dye degradation. RSC Advances, 2014, 4(106): 61960–61967

DOI

17
Sehati S, Entezari M H. Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. Journal of Colloid and Interface Science, 2016, 462: 130–139

DOI

18
Andersson S, Wadsley A D. The crystal structure of Na2Ti3O7. Acta Crystallographica, 1961, 14(12): 1245–1249

DOI

19
Andersson S, Wadsley A D, Nilsson R, The crystal structure of K2Ti2O5. Acta Chemica Scandinavica, 1961, 15: 663–669

DOI

20
Grey I E, Madsen I C, Watts J A, New cesium titanate layer structures. Journal of Solid State Chemistry, 1985, 58(3): 350–356

DOI

21
Andersson S, Wadsley A D. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica, 1962, 15(3): 194–201

DOI

22
Berry K L, Aftandilian V D, Gilbert W W, Potassium tetra- and hexatitanates. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3–4): 231–239

DOI

23
Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982, 86(25): 5023–5026

DOI

24
Kwiatkowska J, Grey I E, Madsen I C, An X-ray and neutron diffraction study of cesium titanates, Cs2Ti5O11 and Cs2Ti5O11.X2O, X = H, D. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1987, 43(3): 258–265

DOI

25
Bursill L A, Smith D J, Kwiatkowska J. Identifying characteristics of the fibrous cesium titanate Cs2Ti5O11. Journal of Solid State Chemistry, 1987, 69(2): 360–368

DOI

26
Fujiki Y. Growth of mixed fibers of potassium-tetratitanate and-dititanate by slow-cooling calcination method. Journal of the Ceramic Association, Japan, 1982, 90(1046): 624–626

DOI

27
Kajiwara M. The formation of potassium titanate fibre with flux methods. Journal of Materials Science, 1987, 22(4): 1223–1227

DOI

28
Lee J K, Lee K H, Kim H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. Journal of Materials Science, 1996, 31(20): 5493–5498

DOI

29
Izawa H, Kikkawa S, Koizumi M. Hydrothermal synthesis of sodium trititanate and preparation of fibrous H2Ti3O7. Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33(7): 353–355

DOI

30
Masaki N, Uchida S, Yamane H, Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system. Journal of Materials Science, 2000, 35(13): 3307–3311

DOI

31
Kitano M, Wada E, Nakajima K, Protonated titanate nanotubes with lewis and brønsted acidity: relationship between nanotube structure and catalytic activity. Chemistry of Materials, 2013, 25(3): 385–393

DOI

32
Ma R, Fukuda K, Sasaki T, Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B, 2005, 109(13): 6210–6214

DOI

33
Lan Y, Gao X, Zhu H, Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials, 2005, 15(8): 1310–1318

DOI

34
Thennarasu S, Rajasekar K, Balkis Ameen K. Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. Journal of Molecular Structure, 2013, 1049: 446–457

DOI

35
Sakurai Y, Yoshida T. Synthesis of K2Ti4O9 by the hydrolysis of KOH-Ti(iso-C3H7O)4 ethanol solution. Journal of the Ceramic Society of Japan, 1991, 99(1146): 105–107

DOI

36
Yang J, Li D, Wang X, Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. Journal of Materials Science, 2003, 38(13): 2907–2911

DOI

37
Bao N, Feng X, Shen L, Calcination syntheses of a series of potassium titanates and their morphologic evolution. Crystal Growth & Design, 2002, 2(5): 437–442

DOI

38
Bao N, Shen L, Feng X, High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania. Journal of the American Ceramic Society, 2004, 87(3): 326–330

DOI

39
Yakubovich O V, Kireev V V. Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 2003, 48(1): 24–28

DOI

40
Fujiki Y, Ohta N. The flux growth reactions of potassium tetratitanate (K2Ti4O9) fibers. Journal of the Ceramic Association, Japan, 1980, 88(1015): 111–116

DOI

41
Bavykin D V, Parmon V N, Lapkin A A, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14(22): 3370–3377

DOI

42
Gao T, Fjellvåg H, Norby P. Crystal structures of titanate nanotubes: a Raman scattering study. Inorganic Chemistry, 2009, 48(4): 1423–1432

DOI

43
Yang D, Zheng Z, Yuan Y, Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(ii) ions from water. Physical Chemistry Chemical Physics, 2010, 12(6): 1271–1277

DOI

44
Feng M, You W, Wu Z, Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Applied Materials & Interfaces, 2013, 5(23): 12654–12662

DOI

45
Magalhães Nunes L, Gouveia de Souza A, Fernandes de Farias R. Synthesis of new compounds involving layered titanates and niobates with copper(II). Journal of Alloys and Compounds, 2001, 319(1–2): 94–99

DOI

46
Yang D, Zheng Z, Liu H, Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. Journal of Physical Chemistry C, 2008, 112(42): 16275–16280

DOI

47
Li G, Zhang L, Fang M. Facile fabrication of sodium titanate nanostructures using metatitanic acid (TiO2⋅H2O) and its adsorption property. Journal of Nanomaterials, 2012: 875295

DOI

48
Li N, Zhang L, Chen Y, Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Advanced Functional Materials, 2012, 22(4): 835–841

DOI

49
Wang T, Liu W, Xiong L, Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chemical Engineering Journal, 2013, 215–216: 366–374

DOI

50
Liu W, Sun W, Han Y, Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2014, 452: 138–147

DOI

51
Vithal M, Rama Krishna S, Ravi G, Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceramics International, 2013, 39(7): 8429–8439

DOI

52
Gu X, Chen F, Zhao B, Photocatalytic reactivity of Ce-intercalated layered titanate prepared with a hybrid method based on ion-exchange and thermal treatment. Superlattices and Microstructures, 2011, 50(2): 107–118

DOI

53
Ikenaga K, Kurokawa H, Ohshima M A, New development of inorganic ion exchanger: ion-exchange reaction of layered sodium titanate (Na2Ti3O7) with mono, di, and trivalent ions. Journal of Ion Exchange, 2005, 16(1): 10–17

DOI

54
Liu W, Zhao X, Wang T, Selective and irreversible adsorption of mercury(ii) from aqueous solution by a flower-like titanate nanomaterial. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(34): 17676–17684

DOI

55
Izawa H, Kikkawa S, Koizumi M. Cation exchange selectivity of layered titanates, H2Ti3O7. Journal of Solid State Chemistry, 1985, 60(2): 264–267

DOI

56
Sasaki T, Komatsu Y, Fujiki Y. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4(4): 894–899

DOI

57
Komatsu Y, Fujiki Y, Sasaki T. Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions. Bunseki Kagaku, 1982, 31(7): E225–E229

DOI

58
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K. Bunseki Kagaku, 1984, 33(5): E159–E162

DOI

59
Komatsu Y, Fujiki Y, Sasaki T. Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers. Bunseki Kagaku, 1983, 32(2): E33–E39

DOI

60
Szirmai P, Stevens J, Horváth E, Competitive ion-exchange of manganese and gadolinium in titanate nanotubes. Catalysis Today, 2017, 284: 146–152

DOI

61
Song X, Yang E, Zheng Y. Synthesis of MxHyTi3O7 nanotubes by simple ion-exchanged process and their adsorption property. Chinese Science Bulletin, 2007, 52(18): 2491–2495

DOI

62
Torrente-Murciano L, Lapkin A A, Bavykin D V, Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. Journal of Catalysis, 2007, 245(2): 272–278

DOI

63
Chang T H. Synthesis and characterization of europium-exchanged titanate nanoporous phosphors. Journal of the Chinese Chemical Society (Taipei), 2016, 63(2): 233–238

DOI

64
Huang J, Cao Y, Liu Z, Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chemical Engineering Journal, 2012, 180: 75–80

DOI

65
Izawa H, Kikkawa S, Koizumi M. Europium3+ and terbium3+ intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9.H2O using ion-exchange reaction. Nippon Kagaku Kaishi, 1987, 3(3): 397–399

DOI

66
Izawa H, Kikkawa S, Koizumi M. Effect of intercalated alkylammonium on cation exchange properties of H2Ti3O7. Journal of Solid State Chemistry, 1987, 69(2): 336–342

DOI

67
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of cobalt(II) ions on crystalline hydrous titanium dioxide fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59(1): 49–52

DOI

68
Sasaki T, Komatsu Y, Fujiki Y. Distribution coefficients of lanthanide elements and some separations on layered hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 1986, 107(2): 111–119

DOI

69
Sasaki T, Komatsu Y, Fujiki Y. Formation and characterization of layered lithium titanate hydrate. Materials Research Bulletin, 1987, 22(10): 1321–1328

DOI

70
Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946

DOI

71
Saothayanun T K, Sirinakorn T T, Ogawa M. Ion exchange of layered alkali titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with alkali halides by the solid-state reactions at room temperature. Inorganic Chemistry, 2020, 59(6): 4024–4029

DOI

72
Kim Y I, Salim S, Huq M J, Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. Journal of the American Chemical Society, 1991, 113(25): 9561–9563

DOI

73
Miyata H, Sugahara Y, Kuroda K, Synthesis of a viologen–tetratitanate intercalation compound and its photochemical behaviour. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1988, 84(8): 2677–2682

DOI

74
Kaito R, Miyamoto N, Kuroda K, Intercalation of cationic phthalocyanines into layered titanates and control of the microstructures. Journal of Materials Chemistry, 2002, 12(12): 3463–3468

DOI

75
Miyamoto N, Kuroda K, Ogawa M. Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. Journal of Physical Chemistry B, 2004, 108(14): 4268–4274

DOI

76
Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, 11(11): 1262

DOI

77
(Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials: concepts, methods and functions. Bulletin of the Chemical Society of Japan, 2021, 94(2): 678–693

DOI

78
Ogawa M, Takizawa Y. Intercalation of tris(2, 2'-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry B, 1999, 103(24): 5005–5009

DOI

79
Ogawa M, Takizawa Y. One pot synthesis of layered tetratitanate-organic intercalation compounds with the aid of macrocyclic compounds. Molecular Crystals and Liquid Crystals Science and Technology Section A, Molecular Crystals and Liquid Crystals, 2000, 341(2): 357–362

DOI

80
Hsu C Y, Chiu T C, Shih M H, Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation. Journal of Physical Chemistry C, 2010, 114(10): 4502–4510

DOI

81
Marques T M F, Ferreira O P, da Costa J A P, Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87: 213–220

DOI

82
Machida M, Ma X, Taniguchi H, Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3−xMxO7 and K2Ti4−xMxO9 (M=Mn, Fe, Co, Ni, Cu). Journal of Molecular Catalysis A Chemical, 2000, 155(1–2): 131–142

DOI

83
Jiang F, Zheng Z, Xu Z, Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation. Journal of Hazardous Materials, 2009, 164(2–3): 1250–1256

DOI

84
Uchida S, Yamamoto Y, Fujishiro Y, Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. Journal of the Chemical Society, Faraday Transactions, 1997, 93(17): 3229–3234

DOI

85
Ogura S, Kohno M, Sato K, Effects of RuO2 on activity for water decomposition of a RuO2/Na2Ti3O7 photocatalyst with a zigzag layer structure. Journal of Materials Chemistry, 1998, 8(11): 2335–2337

DOI

86
Harsha N, Krishna K V S, Renuka N K, Facile synthesis of γ-Fe2O3 nanoparticles integrated H2Ti3O7 nanotubes structure as a magnetically recyclable dye-removal catalyst. RSC Advances, 2015, 5(38): 30354–30362

DOI

87
Lin B, Zhou Y, He L, Mesoporous CdS-pillared H2Ti3O7 nanohybrids with efficient photocatalytic activity. Journal of Physics and Chemistry of Solids, 2015, 79: 66–71

DOI

88
Feist T P, Davies P K. The soft chemical synthesis of TiO2 (B) from layered titanates. Journal of Solid State Chemistry, 1992, 101(2): 275–295

DOI

89
Zhu H Y, Lan Y, Gao X P, Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Journal of the American Chemical Society, 2005, 127(18): 6730–6736

DOI

90
Zou C, Zhao X, Xu Y. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water. Dalton Transactions (Cambridge, England), 2018, 47(14): 4909–4915

DOI

91
Sirinakorn T T, Bureekaew S, Ogawa M. Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92(1): 1–6

DOI

92
Tip Sirinakorn T, Bureekaew S, Ogawa M. Highly efficient indium(III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018, 2018(34): 3835–3839

DOI

93
Shibata M, Kudo A, Tanaka A, Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution. Chemistry Letters, 1987, 16(6): 1017–1018

DOI

94
Kudo A, Kondo T. Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6). Journal of Materials Chemistry, 1997, 7: 777–780

DOI

95
Esmat M, Farghali A A, El-Dek S I, Conversion of a 2D lepidocrocite-type layered titanate into its 1D nanowire form with enhancement of cation exchange and photocatalytic performance. Inorganic Chemistry, 2019, 58(12): 7989–7996

DOI

96
Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. Journal of Physical Chemistry C, 2008, 112(45): 17678–17682

DOI

97
Lin C H, Chao J H, Tsai W J, Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol. Physical Chemistry Chemical Physics, 2014, 16(43): 23743–23753

DOI

98
Hong S W, Kim A, Choi J H, Intercalation of conjugated polyelectrolytes in layered titanate nanosheets for enhancement in photocatalytic activity. Journal of Solid State Chemistry, 2019, 269: 291–296

DOI

99
Ogawa M, Morita M, Igarashi S, A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance. Journal of Solid State Chemistry, 2013, 206: 9–13

DOI

100
Escobedo Bretado M A, González Lozano M A, Collins Martínez V, Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. International Journal of Hydrogen Energy, 2019, 44(24): 12470–12476

DOI

101
Yoshida H, Takeuchi M, Sato M, Potassium hexatitanate photocatalysts prepared by a flux method for water splitting. Catalysis Today, 2014, 232: 158–164

DOI

102
Soontornchaiyakul W, Fujimura T, Yano N, Photocatalytic hydrogen evolution over exfoliated Rh-doped titanate nanosheets. ACS Omega, 2020, 5(17): 9929–9936

DOI

103
Khan S, Ikari H, Suzuki N, One-pot synthesis of anatase, rutile-decorated hydrogen titanate nanorods by yttrium doping for solar H2 production. ACS Omega, 2020, 5(36): 23081–23089

DOI

104
Liu G, Wang L, Sun C, Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chemistry of Materials, 2009, 21(7): 1266–1274

DOI

105
Esmat M, El-Hosainy H, Tahawy R, Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Applied Catalysis B: Environmental, 2021, 285: 119755

DOI

106
Li P, Cao Q, Zheng D, Synthesis of mesoporous TiO2-B nanobelts with highly crystalized walls toward efficient H2 evolution. Nanomaterials (Basel, Switzerland), 2019, 9(7): 919

DOI

107
Chen W, Dosado A G, Chan A, Highly reactive anatase nanorod photocatalysts synthesized by calcination of hydrogen titanate nanotubes: effect of calcination conditions on photocatalytic performance for aqueous dye degradation and H2 production in alcohol-water mixtures. Applied Catalysis A, General, 2018, 565: 98–118

DOI

108
Wang C, Zhang X, Zhang Y, Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. Journal of Physical Chemistry C, 2011, 115(45): 22276–22285

DOI

109
Wang C, Zhang X, Wei Y, Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction. Dalton Transactions (Cambridge, England), 2015, 44(29): 13331–13339

DOI

110
Li Y, Wang C, Song M, TiO2–x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental, 2019, 243: 760–770

DOI

111
Liu H, Lin B, He L, Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis. Chemical Engineering Journal, 2013, 215–216: 396–403

DOI

112
Cui W, Ma S, Liu L, Photocatalytic activity of Cd1–xZnxS/K2Ti4O9 for Rhodamine B degradation under visible light irradiation. Applied Surface Science, 2013, 271: 171–181

DOI

113
Camposeco R, Castillo S, Rodriguez-González V, Promotional effect of Rh nanoparticles on WO3/TiO2 titanate nanotube photocatalysts for boosted hydrogen production. Journal of Photochemistry and Photobiology A, Chemistry, 2018, 353: 114–121

DOI

114
Yousef A, Barakat N A M, Khalil K A, Photocatalytic release of hydrogen from ammonia borane-complex using Ni(0)-doped TiO2/C electrospun nanofibers. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2012, 410: 59–65

DOI

115
Nirmala R, Kim H Y, Yi C, Barakat N A M, Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2012, 37(13): 10036–10045

DOI

116
Simagina V I, Komova O V, Ozerova A M, TiO2-based photocatalysts for controllable hydrogen evolution from ammonia borane. Catalysis Today, 2020, online, doi:10.1016/j.cattod.2020.04.070

DOI

117
Zaki A H, Shalan A E, El-Shafeay A, Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2020, 2(5): 2080–2086

DOI

118
Barakat N A M, Zaki A H, Ahmed E, FexCo1−x-doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. International Journal of Hydrogen Energy, 2018, 43(16): 7990–7997

DOI

119
Wu Y, Sun Y, Fu W, Graphene-based modulation on the growth of urchin-like Na2Ti3O7 microspheres for photothermally enhanced H2 generation from ammonia borane. ACS Applied Nano Materials, 2020, 3(3): 2713–2722

DOI

120
Park H, Ou H H, Colussi A J, Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. Journal of Physical Chemistry A, 2015, 119(19): 4658–4666

DOI

121
Wei Z, Kowalska E, Wang K, Enhanced photocatalytic activity of octahedral anatase particles prepared by hydrothermal reaction. Catalysis Today, 2017, 280: 29–36

DOI

122
Li Q, Kako T, Ye J. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36(8): 4716–4723

DOI

123
Ide Y, Shirae W, Takei T, Merging cation exchange and photocatalytic charge separation efficiency in an anatase/K2Ti4O9 nanobelt heterostructure for metal ions fixation. Inorganic Chemistry, 2018, 57(10): 6045–6050

DOI

124
Ding J, Ming J, Lu D, Study of the enhanced visible-light-sensitive photocatalytic activity of Cr2O3 loaded titanate nanosheets for Cr(VI) degradation and H2 generation. Catalysis Science & Technology, 2017, 7(11): 2283–2297

DOI

125
Xue J, Long L, Zhang L, Enhanced H2 evolution and the interfacial electron transfer mechanism of titanate nanotube sensitized with CdS quantum dots and graphene quantum dots. International Journal of Hydrogen Energy, 2020, 45(11): 6476–6486

DOI

126
Dosado A G, Chen W, Chan A, Novel Au/TiO2 photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. Journal of Catalysis, 2015, 330: 238–254

DOI

127
Wang H, Hu X, Ma Y, Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2020, 41(1): 95–102

DOI

128
Dostanić J, Lončarević D, Pavlović V B, Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceramics International, 2019, 45(15): 19447–19455

DOI

129
Huang J, Jiang Y, Li G, Hetero-structural NiTiO3/TiO2 nanotubes for efficient photocatalytic hydrogen generation. Renewable Energy, 2017, 111: 410–415

DOI

130
Majeed I, Nadeem M A, Kanodarwala F K, Controlled synthesis of TiO2 nanostructures: exceptional hydrogen production in alcohol-water mixtures over Cu(OH)2-Ni(OH)2/TiO2 nanorods. ChemistrySelect, 2017, 2(25): 7497–7507

DOI

131
Crake A, Christoforidis K C, Gregg A, The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small, 2019, 15(11): 1805473

DOI

132
Li J, Tang Z, Zhang Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005, 7(1): 62–67

DOI

133
Chiba K, Kijima N, Takahashi Y, Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure. Solid State Ionics, 2008, 178(33–34): 1725–1730

DOI

134
Senguttuvan P, Rousse G, Seznec V, Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chemistry of Materials, 2011, 23(18): 4109–4111

DOI

/