Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues
Taya (Ko) SAOTHAYANUN, Thipwipa (Tip) SIRINAKORN, Makoto OGAWA
Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues
Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.
layered alkali titanates / photocatalysis / hydrogen evdution / metal ions collection
[1] |
Wang L, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chemical Reviews, 2014, 114(19): 9455–9486
CrossRef
Google scholar
|
[2] |
Ogawa M, Saito K, Sohmiya M. A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions (Cambridge, England), 2014, 43(27): 10340–10354
CrossRef
Google scholar
|
[3] |
Hong Z, Wei M. Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(14): 4403–4414
CrossRef
Google scholar
|
[4] |
Chen C, Sewvandi G A, Kusunose T,
CrossRef
Google scholar
|
[5] |
Okada T, Ide Y, Ogawa M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry, an Asian Journal, 2012, 7(9): 1980–1992
CrossRef
Google scholar
|
[6] |
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
CrossRef
Google scholar
|
[7] |
Ide Y, Sadakane M, Sano T,
CrossRef
Google scholar
|
[8] |
Kim I Y, Jo Y K, Lee J M,
CrossRef
Google scholar
|
[9] |
Sasaki T, Watanabe M, Komatsu Y,
CrossRef
Google scholar
|
[10] |
Dion M, Piffard Y, Tournoux M. The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry, 1978, 40(5): 917–918
CrossRef
Google scholar
|
[11] |
Izawa H, Kikkawa S, Koizumi M. Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron, 1983, 2(8): 741–744
CrossRef
Google scholar
|
[12] |
Miyamoto N, Kuroda K, Ogawa M. Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. Journal of Materials Chemistry, 2004, 14(2): 165–170
CrossRef
Google scholar
|
[13] |
Allen M R, Thibert A, Sabio E M,
CrossRef
Google scholar
|
[14] |
Anderson M W, Klinowski J. Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29(17): 3260–3263
CrossRef
Google scholar
|
[15] |
Ma R, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of Chemical Research, 2015, 48(1): 136–143
CrossRef
Google scholar
|
[16] |
Xiong Z, Zhao X S. Preparation of layered titanate with interlayer cadmium sulfide particles for visible-light-assisted dye degradation. RSC Advances, 2014, 4(106): 61960–61967
CrossRef
Google scholar
|
[17] |
Sehati S, Entezari M H. Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. Journal of Colloid and Interface Science, 2016, 462: 130–139
CrossRef
Google scholar
|
[18] |
Andersson S, Wadsley A D. The crystal structure of Na2Ti3O7. Acta Crystallographica, 1961, 14(12): 1245–1249
CrossRef
Google scholar
|
[19] |
Andersson S, Wadsley A D, Nilsson R,
CrossRef
Google scholar
|
[20] |
Grey I E, Madsen I C, Watts J A,
CrossRef
Google scholar
|
[21] |
Andersson S, Wadsley A D. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica, 1962, 15(3): 194–201
CrossRef
Google scholar
|
[22] |
Berry K L, Aftandilian V D, Gilbert W W,
CrossRef
Google scholar
|
[23] |
Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982, 86(25): 5023–5026
CrossRef
Google scholar
|
[24] |
Kwiatkowska J, Grey I E, Madsen I C,
CrossRef
Google scholar
|
[25] |
Bursill L A, Smith D J, Kwiatkowska J. Identifying characteristics of the fibrous cesium titanate Cs2Ti5O11. Journal of Solid State Chemistry, 1987, 69(2): 360–368
CrossRef
Google scholar
|
[26] |
Fujiki Y. Growth of mixed fibers of potassium-tetratitanate and-dititanate by slow-cooling calcination method. Journal of the Ceramic Association, Japan, 1982, 90(1046): 624–626
CrossRef
Google scholar
|
[27] |
Kajiwara M. The formation of potassium titanate fibre with flux methods. Journal of Materials Science, 1987, 22(4): 1223–1227
CrossRef
Google scholar
|
[28] |
Lee J K, Lee K H, Kim H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. Journal of Materials Science, 1996, 31(20): 5493–5498
CrossRef
Google scholar
|
[29] |
Izawa H, Kikkawa S, Koizumi M. Hydrothermal synthesis of sodium trititanate and preparation of fibrous H2Ti3O7. Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33(7): 353–355
CrossRef
Google scholar
|
[30] |
Masaki N, Uchida S, Yamane H,
CrossRef
Google scholar
|
[31] |
Kitano M, Wada E, Nakajima K,
CrossRef
Google scholar
|
[32] |
Ma R, Fukuda K, Sasaki T,
CrossRef
Google scholar
|
[33] |
Lan Y, Gao X, Zhu H,
CrossRef
Google scholar
|
[34] |
Thennarasu S, Rajasekar K, Balkis Ameen K. Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. Journal of Molecular Structure, 2013, 1049: 446–457
CrossRef
Google scholar
|
[35] |
Sakurai Y, Yoshida T. Synthesis of K2Ti4O9 by the hydrolysis of KOH-Ti(iso-C3H7O)4 ethanol solution. Journal of the Ceramic Society of Japan, 1991, 99(1146): 105–107
CrossRef
Google scholar
|
[36] |
Yang J, Li D, Wang X,
CrossRef
Google scholar
|
[37] |
Bao N, Feng X, Shen L,
CrossRef
Google scholar
|
[38] |
Bao N, Shen L, Feng X,
CrossRef
Google scholar
|
[39] |
Yakubovich O V, Kireev V V. Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 2003, 48(1): 24–28
CrossRef
Google scholar
|
[40] |
Fujiki Y, Ohta N. The flux growth reactions of potassium tetratitanate (K2Ti4O9) fibers. Journal of the Ceramic Association, Japan, 1980, 88(1015): 111–116
CrossRef
Google scholar
|
[41] |
Bavykin D V, Parmon V N, Lapkin A A,
CrossRef
Google scholar
|
[42] |
Gao T, Fjellvåg H, Norby P. Crystal structures of titanate nanotubes: a Raman scattering study. Inorganic Chemistry, 2009, 48(4): 1423–1432
CrossRef
Google scholar
|
[43] |
Yang D, Zheng Z, Yuan Y,
CrossRef
Google scholar
|
[44] |
Feng M, You W, Wu Z,
CrossRef
Google scholar
|
[45] |
Magalhães Nunes L, Gouveia de Souza A, Fernandes de Farias R. Synthesis of new compounds involving layered titanates and niobates with copper(II). Journal of Alloys and Compounds, 2001, 319(1–2): 94–99
CrossRef
Google scholar
|
[46] |
Yang D, Zheng Z, Liu H,
CrossRef
Google scholar
|
[47] |
Li G, Zhang L, Fang M. Facile fabrication of sodium titanate nanostructures using metatitanic acid (TiO2⋅H2O) and its adsorption property. Journal of Nanomaterials, 2012: 875295
CrossRef
Google scholar
|
[48] |
Li N, Zhang L, Chen Y,
CrossRef
Google scholar
|
[49] |
Wang T, Liu W, Xiong L,
CrossRef
Google scholar
|
[50] |
Liu W, Sun W, Han Y,
CrossRef
Google scholar
|
[51] |
Vithal M, Rama Krishna S, Ravi G,
CrossRef
Google scholar
|
[52] |
Gu X, Chen F, Zhao B,
CrossRef
Google scholar
|
[53] |
Ikenaga K, Kurokawa H, Ohshima M A,
CrossRef
Google scholar
|
[54] |
Liu W, Zhao X, Wang T,
CrossRef
Google scholar
|
[55] |
Izawa H, Kikkawa S, Koizumi M. Cation exchange selectivity of layered titanates, H2Ti3O7. Journal of Solid State Chemistry, 1985, 60(2): 264–267
CrossRef
Google scholar
|
[56] |
Sasaki T, Komatsu Y, Fujiki Y. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4(4): 894–899
CrossRef
Google scholar
|
[57] |
Komatsu Y, Fujiki Y, Sasaki T. Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions. Bunseki Kagaku, 1982, 31(7): E225–E229
CrossRef
Google scholar
|
[58] |
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K. Bunseki Kagaku, 1984, 33(5): E159–E162
CrossRef
Google scholar
|
[59] |
Komatsu Y, Fujiki Y, Sasaki T. Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers. Bunseki Kagaku, 1983, 32(2): E33–E39
CrossRef
Google scholar
|
[60] |
Szirmai P, Stevens J, Horváth E,
CrossRef
Google scholar
|
[61] |
Song X, Yang E, Zheng Y. Synthesis of MxHyTi3O7 nanotubes by simple ion-exchanged process and their adsorption property. Chinese Science Bulletin, 2007, 52(18): 2491–2495
CrossRef
Google scholar
|
[62] |
Torrente-Murciano L, Lapkin A A, Bavykin D V,
CrossRef
Google scholar
|
[63] |
Chang T H. Synthesis and characterization of europium-exchanged titanate nanoporous phosphors. Journal of the Chinese Chemical Society (Taipei), 2016, 63(2): 233–238
CrossRef
Google scholar
|
[64] |
Huang J, Cao Y, Liu Z,
CrossRef
Google scholar
|
[65] |
Izawa H, Kikkawa S, Koizumi M. Europium3+ and terbium3+ intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9.H2O using ion-exchange reaction. Nippon Kagaku Kaishi, 1987, 3(3): 397–399
CrossRef
Google scholar
|
[66] |
Izawa H, Kikkawa S, Koizumi M. Effect of intercalated alkylammonium on cation exchange properties of H2Ti3O7. Journal of Solid State Chemistry, 1987, 69(2): 336–342
CrossRef
Google scholar
|
[67] |
Komatsu Y, Fujiki Y, Sasaki T. Adsorption of cobalt(II) ions on crystalline hydrous titanium dioxide fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59(1): 49–52
CrossRef
Google scholar
|
[68] |
Sasaki T, Komatsu Y, Fujiki Y. Distribution coefficients of lanthanide elements and some separations on layered hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 1986, 107(2): 111–119
CrossRef
Google scholar
|
[69] |
Sasaki T, Komatsu Y, Fujiki Y. Formation and characterization of layered lithium titanate hydrate. Materials Research Bulletin, 1987, 22(10): 1321–1328
CrossRef
Google scholar
|
[70] |
Shannon R D, Prewitt C T. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946
CrossRef
Google scholar
|
[71] |
Saothayanun T K, Sirinakorn T T, Ogawa M. Ion exchange of layered alkali titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with alkali halides by the solid-state reactions at room temperature. Inorganic Chemistry, 2020, 59(6): 4024–4029
CrossRef
Google scholar
|
[72] |
Kim Y I, Salim S, Huq M J,
CrossRef
Google scholar
|
[73] |
Miyata H, Sugahara Y, Kuroda K,
CrossRef
Google scholar
|
[74] |
Kaito R, Miyamoto N, Kuroda K,
CrossRef
Google scholar
|
[75] |
Miyamoto N, Kuroda K, Ogawa M. Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. Journal of Physical Chemistry B, 2004, 108(14): 4268–4274
CrossRef
Google scholar
|
[76] |
Ide Y, Ogawa M. Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, 11(11): 1262
CrossRef
Google scholar
|
[77] |
(Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials: concepts, methods and functions. Bulletin of the Chemical Society of Japan, 2021, 94(2): 678–693
CrossRef
Google scholar
|
[78] |
Ogawa M, Takizawa Y. Intercalation of tris(2, 2'-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry B, 1999, 103(24): 5005–5009
CrossRef
Google scholar
|
[79] |
Ogawa M, Takizawa Y. One pot synthesis of layered tetratitanate-organic intercalation compounds with the aid of macrocyclic compounds. Molecular Crystals and Liquid Crystals Science and Technology Section A, Molecular Crystals and Liquid Crystals, 2000, 341(2): 357–362
CrossRef
Google scholar
|
[80] |
Hsu C Y, Chiu T C, Shih M H,
CrossRef
Google scholar
|
[81] |
Marques T M F, Ferreira O P, da Costa J A P,
CrossRef
Google scholar
|
[82] |
Machida M, Ma X, Taniguchi H,
CrossRef
Google scholar
|
[83] |
Jiang F, Zheng Z, Xu Z,
CrossRef
Google scholar
|
[84] |
Uchida S, Yamamoto Y, Fujishiro Y,
CrossRef
Google scholar
|
[85] |
Ogura S, Kohno M, Sato K,
CrossRef
Google scholar
|
[86] |
Harsha N, Krishna K V S, Renuka N K,
CrossRef
Google scholar
|
[87] |
Lin B, Zhou Y, He L,
CrossRef
Google scholar
|
[88] |
Feist T P, Davies P K. The soft chemical synthesis of TiO2 (B) from layered titanates. Journal of Solid State Chemistry, 1992, 101(2): 275–295
CrossRef
Google scholar
|
[89] |
Zhu H Y, Lan Y, Gao X P,
CrossRef
Google scholar
|
[90] |
Zou C, Zhao X, Xu Y. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water. Dalton Transactions (Cambridge, England), 2018, 47(14): 4909–4915
CrossRef
Google scholar
|
[91] |
Sirinakorn T T, Bureekaew S, Ogawa M. Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92(1): 1–6
CrossRef
Google scholar
|
[92] |
Tip Sirinakorn T, Bureekaew S, Ogawa M. Highly efficient indium(III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018, 2018(34): 3835–3839
CrossRef
Google scholar
|
[93] |
Shibata M, Kudo A, Tanaka A,
CrossRef
Google scholar
|
[94] |
Kudo A, Kondo T. Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6). Journal of Materials Chemistry, 1997, 7: 777–780
CrossRef
Google scholar
|
[95] |
Esmat M, Farghali A A, El-Dek S I,
CrossRef
Google scholar
|
[96] |
Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. Journal of Physical Chemistry C, 2008, 112(45): 17678–17682
CrossRef
Google scholar
|
[97] |
Lin C H, Chao J H, Tsai W J,
CrossRef
Google scholar
|
[98] |
Hong S W, Kim A, Choi J H,
CrossRef
Google scholar
|
[99] |
Ogawa M, Morita M, Igarashi S,
CrossRef
Google scholar
|
[100] |
Escobedo Bretado M A, González Lozano M A, Collins Martínez V,
CrossRef
Google scholar
|
[101] |
Yoshida H, Takeuchi M, Sato M,
CrossRef
Google scholar
|
[102] |
Soontornchaiyakul W, Fujimura T, Yano N,
CrossRef
Google scholar
|
[103] |
Khan S, Ikari H, Suzuki N,
CrossRef
Google scholar
|
[104] |
Liu G, Wang L, Sun C,
CrossRef
Google scholar
|
[105] |
Esmat M, El-Hosainy H, Tahawy R,
CrossRef
Google scholar
|
[106] |
Li P, Cao Q, Zheng D,
CrossRef
Google scholar
|
[107] |
Chen W, Dosado A G, Chan A,
CrossRef
Google scholar
|
[108] |
Wang C, Zhang X, Zhang Y,
CrossRef
Google scholar
|
[109] |
Wang C, Zhang X, Wei Y,
CrossRef
Google scholar
|
[110] |
Li Y, Wang C, Song M,
CrossRef
Google scholar
|
[111] |
Liu H, Lin B, He L,
CrossRef
Google scholar
|
[112] |
Cui W, Ma S, Liu L,
CrossRef
Google scholar
|
[113] |
Camposeco R, Castillo S, Rodriguez-González V,
CrossRef
Google scholar
|
[114] |
Yousef A, Barakat N A M, Khalil K A,
CrossRef
Google scholar
|
[115] |
Nirmala R, Kim H Y, Yi C, Barakat N A M,
CrossRef
Google scholar
|
[116] |
Simagina V I, Komova O V, Ozerova A M,
CrossRef
Google scholar
|
[117] |
Zaki A H, Shalan A E, El-Shafeay A,
CrossRef
Google scholar
|
[118] |
Barakat N A M, Zaki A H, Ahmed E,
CrossRef
Google scholar
|
[119] |
Wu Y, Sun Y, Fu W,
CrossRef
Google scholar
|
[120] |
Park H, Ou H H, Colussi A J,
CrossRef
Google scholar
|
[121] |
Wei Z, Kowalska E, Wang K,
CrossRef
Google scholar
|
[122] |
Li Q, Kako T, Ye J. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36(8): 4716–4723
CrossRef
Google scholar
|
[123] |
Ide Y, Shirae W, Takei T,
CrossRef
Google scholar
|
[124] |
Ding J, Ming J, Lu D,
CrossRef
Google scholar
|
[125] |
Xue J, Long L, Zhang L,
CrossRef
Google scholar
|
[126] |
Dosado A G, Chen W, Chan A,
CrossRef
Google scholar
|
[127] |
Wang H, Hu X, Ma Y,
CrossRef
Google scholar
|
[128] |
Dostanić J, Lončarević D, Pavlović V B,
CrossRef
Google scholar
|
[129] |
Huang J, Jiang Y, Li G,
CrossRef
Google scholar
|
[130] |
Majeed I, Nadeem M A, Kanodarwala F K,
CrossRef
Google scholar
|
[131] |
Crake A, Christoforidis K C, Gregg A,
CrossRef
Google scholar
|
[132] |
Li J, Tang Z, Zhang Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005, 7(1): 62–67
CrossRef
Google scholar
|
[133] |
Chiba K, Kijima N, Takahashi Y,
CrossRef
Google scholar
|
[134] |
Senguttuvan P, Rousse G, Seznec V,
CrossRef
Google scholar
|
/
〈 | 〉 |