1 Introduction
2 ADS research development history and roadmap in China
3 Development route of the CiADS project
Tab.1 Overall design parameters of CiADS |
Parameter | Design value | Operation value | |
---|---|---|---|
CiADS | Total power (reactor+ beam)/MW | 10 | 10 |
Full power operation time/a | 3 | ≤3 | |
Annual operation time/month | 3 | ≤3 | |
Superconducting linac | Accelerating particles | Proton | Proton |
Energy/MeV | 500 | 500 | |
Maximum beam power/MW | 2.5 | 2.26 | |
Operation mode | CW/pulse | CW/pulse | |
High power spallation target | Maximum bearable beam power/MW | 2.5 | 2.26 |
Subcritical reactor | Energy spectrum | Fast neutron | Fast neutron |
Maximum thermal power/MW | 10 | 9.76 |
4 Latest design of subcritical reactor of CiADS
4.1 Overall design
Tab.2 Overview of main technical parameters of CiADS subcritical reactor |
Characteristic | Value or description |
---|---|
Reactor type | LBE-cooled fast reactor |
Thermal capacity/MWth | 10 |
Fuel composition and 235U enrichment | UO2 (19.75 wt%) |
Primary system | Pool-type |
Primary circulation | Forced |
Primary coolant | LBE |
Primary system pressure/MPa | 0.1 |
Primary system temperature/°C | 280–380 |
Number of primary heat exchanger | 4 |
Primary pump | Mechanical pump × 2 |
Secondary coolant | Molten salt (Ternary Nitrates) |
Secondary system pressure/MPa | 0.1 |
Secondary system temperature/°C | 220–230 |
4.2 Design of LBE subcritical reactor
Tab.3 Core design specifications of CiADS |
Item | Value |
---|---|
Reactor thermal power/MW | 9.76 |
Number of fuel assemblies | 52 |
Assembly pitch/mm | 181 |
Active height/mm | 1000 |
Average linear power/(W·cm–1) | 1885.0 |
Fuel pin pitch/mm | 13.4 |
Total fuel charge/kg | 3880 |
Tab.4 Main thermal-hydraulic parameters of subcritical reactor |
Item | Value |
---|---|
Inlet average temperature/°C | 280 |
Core temperature difference/°C | 100 |
Outlet average temperature/°C | 380 |
Core total mass flowrate/(kg·s–1) | 672 |
Core effective mass flowrate/(kg·s–1) | 645 |
Average coolant flow velocity/(m·s–1) | 0.316 |
Maximum coolant flow velocity/(m·s–1) | 0.355 |
Maximum temperature of fuel centerline/°C | 534.29 |
Maximum temperature of clad outer surface/°C | 460.02 |
Maximum coolant temperature/°C | 456.45 |
Main vessel pressure drop/MPa | 0.0087 |
Core pressure drop/MPa | 0.0030 |
Primary heat exchanger pressure drop/MPa | 0.0526 |
4.3 Design of reactor coolant system
4.3.1 Main heat exchanger
Tab.5 Design parameters of main heat exchanger |
Item | No. | Parameter name | Value |
---|---|---|---|
Global parameters | 1 | Heat exchanger type | C-tube type |
2 | Design pressure/MPa | Atmospheric pressure | |
3 | Design temperature/°C | 400 | |
4 | Test pressure/MPa | Atmospheric pressure | |
5 | Test temperature/°C | ≥15 | |
6 | Operating pressure/MPa | Atmospheric pressure | |
7 | Operating temperature/°C | 380 (Shell side)/230 (Tube side) | |
8 | Total number of heat exchangers | 4 | |
9 | Thermal power/single/MW | 2.5 | |
Primary coolant parameters | 1 | Inlet temperature/°C | 380 |
2 | Outlet temperature/°C | 280 | |
3 | Flowrate/single/(kg·s–1) | 172.2 | |
4 | Internal pressure/MPa | Atmospheric pressure+ Liquid column static pressure | |
Secondary side fluid parameters | 1 | Inlet temperature/°C | 220 |
2 | Outlet temperature/°C | 230 | |
3 | Flow rate/single/(kg·s–1) | 114.0 | |
4 | Internal pressure/MPa | Atmospheric pressure |
4.3.2 Main pump
Tab.6 Design parameters of the main pump |
No. | Parameter name | Value |
---|---|---|
1 | Mass flow rate/(kg·s–1) | 380 |
2 | Head/m | 2 (Lead bismuth liquid column) |
3 | Normal operating pressure/MPa | Atmospheric pressure |
4 | Normal operating temperature/°C | 280 |
5 | Design temperature/°C | 400 |
5 Research progress and plan of CiADS subcritical reactor
5.1 Development progress and plan for design software of CiADS reactor
5.1.1 Neutron transport program—CAD-PSFO
5.1.2 Burnup analysis program—OMCB
5.1.3 Subchannel analysis program—LFR-Sub
5.1.4 3D CFD thermal-hydraulic analysis program—4eqnFoam
5.1.5 Analysis program of LBE electromagnetic pump—LFR-ElePump
5.1.6 System security analysis program
5.1.7 Fuel performance analysis program—FUTURE
5.1.8 Thermal stratification analysis program for LBE—LFR-Buoyancy
5.2 Experimental verification for design software
5.2.1 LBE process and material experimental circuit STELA
Tab.7 Main design parameters of STELA |
No. | Parameter | Value |
---|---|---|
1 | Length/m | 8.0 |
2 | Width/m | 6.0 |
3 | Height/m | 7.0 |
4 | Coolant | LBE |
5 | Oxygen control | Cover gas |
6 | Design pressure/MPa | 0.4 |
7 | Loop material | SS 316L |
8 | Tube size/mm | 50(2” Sch80) |
9 | Total power/kW | 500 |
10 | Heat exchanger capacity/kW | 500 |
11 | Flow rate/(m3·h–1) | 0–15.8 |
12 | Maximum operating temperature/°C | 450 |
5.2.2 Fuel assembly fluid simulation loop
Tab.8 Main parameters of experimental loop |
Item | Parameter |
---|---|
Main pump | Maximum flow: 40 m3/h, head: 29 m |
Heat exchanger | Type: shell-and-tube, material: 316L |
Turbine flowmeter | Range: 1.5–15 m3/h, accuracy: 0.5% |
Turbine flowmeter | Range: 0.4–40 m3/h, accuracy: 0.5% |
TS110 gauge pressure transducer | Range: ‒100U–100 kPa, accuracy: 0.25% |
TS301 differential pressure transducer | Range: –10–10 kPa, accuracy: 0.15% |
Particle image velocimetry system | TSI |
5.2.3 Lead bismuth calibration bench
5.2.4 Zero-power facility of lead-based reactors Venus-I and Venus-II
5.2.5 LBE corrosion experiment bench
Tab.9 Main parameters of LBE radiation experiment |
Irradiated ion | Temperature/°C | Materials | Irradiation dose point |
---|---|---|---|
246.8 MeV Ar12+ | 350 | SIMP | 0.2/0.6 dpa |
280 MeV Fe16+ | 350 | SIMP | 0.2/0.6 dpa |
3.5 MeV Fe13+ | 20 | 316L/15-15Ti | 0.01/0.1/0.01/10 dpa |
3.5 MeV Fe13+ | 350 | 316L/15-15Ti | 0.01/0.1/0.01/10 dpa |
3.5 MeV Fe13+ | 450 | 316L/15-15Ti | 0.01/0.1/0.01/10 dpa |
3.5 MeV Fe13+ | 550 | 316L/15-15Ti | 0.01/0.1/0.01/10 dpa |
Tab.10 Main parameters of LBE corrosion experiment |
Corrosion mode | Temperature/°C | Materials | Corrosion time |
---|---|---|---|
Static state | 450 | 15-15Ti/316L | 500/1000/2000/4000/6000/8000 h |
550 | SIMP/T91/15-15Ti/316L | 500/1000/2000/4000/6000/10000 h | |
After helium ion irradiation | 350 | SIMP | 4000 h |
After helium ion irradiation | 350 | SIMP/T91 | 2000 h |
Synergistic effect | 350 | SIMP | 92h(1.36dpa)/135h(4.8dpa)/295h(13.7dpa) |