REVIEW ARTICLE

Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives

  • Pinting ZHANG ,
  • Shuhong HUANG
Expand
  • School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 17 Jun 2011

Accepted date: 27 Jul 2011

Published date: 05 Dec 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Aeroelasticity has become a critical issue for Multi-Megawatt wind turbine due to the longer and more flexible blade. In this paper, the development of aeroelasticity and aeroelastic codes for wind turbine is reviewed and the aeroelastic models for wind turbine blade are described, based on which, the current research focuses for large scale wind turbine are discussed, including instability problems for onshore and offshore wind turbines, effects of complex inflow, nonlinear effects of large blade deflection, smart structure technologies, and aerohydroelasticity. Finally, the future development of aeroelastic code for large scale wind turbine: aeroservoelasticity and smart rotor control; nonlinear aeroelasticity due to large blade deflection; full-scale 3D computational fluid dynamics (CFD) solution for dynamics; and aerohydroelasticity are presented.

Cite this article

Pinting ZHANG , Shuhong HUANG . Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives[J]. Frontiers in Energy, 0 , 5(4) : 419 -434 . DOI: 10.1007/s11708-011-0166-6

Acknowledgements

This work was supported by the Key Laboratory Scientific Project of Hunan Province Unversity (No. 2009NGQ004), and the Independent Innovation Funding of Huazhong University of Science and Technology (No. 2010MS115).
1
Quarton D C. The evolution of wind turbine design analysis-a twenty year progress review. Wind Energy (Chichester, England), 1998, 1(S1): 5–24

DOI

2
Friedmann P P. Aeroelastic modeling of large wind turbines. Journal of the American Helicopter Society, 1976, 21(4): 17–28

DOI

3
Ottens H, Zwaan R J. Description of a method to calculate the aeroelastic stability of a 2-bladed horizontal axis wind turbine. Technical Report NLR/TR-78115L. NLR National Aerospace Laboratory, Roskilde, 1978

4
Vollan A. Aeroelastic stability and dynamic response calculations for wind energy converters. In: 4th International Symposium on Wind Energy Systems. Stockholm, Sweden, 1982, 427–444

5
Garrad A D. Dynamics of wind turbines. IEE Proceedings. Part A. Physical Science, Measurements and Instrumentation, Management and Education, Reviews, 1983, 130(9): 523–530

DOI

6
Bossanyi E A. GH Bladed Theory and User Manuals. England: Garrad Hassan and Partners Limited, 1996

7
Øye S. FLEX4 Simulation of wind turbine dynamics. In: Pedersen B M, ed. Proceedings of State of the Art of Aeroelastic Codes for Wind Turbine Calculations, 28th Meeting of Experts, International Energy Agency, Annex XI, Lyngby. Copenhagen: Technical University of Denmark, 1996, 71–77

8
Rasmussen F, Hansen M H, Thomsen K, Larsen T J, Bertagnolio F, Johansen J, Madsen H A, Bak C, Hansen A M. Present status of aeroelasticity of wind turbines. Wind Energy (Chichester, England), 2003, 6(3): 213–228

DOI

9
Larsen T J, Madsen H A, Hansen A M, Thomsen K. Investigations of stability effects of an offshore wind turbine using the new aeroelastic code HAWC2. 2005-<month>10</month>-<day>03</day>, http://wind.nrel.gov/public/SeaCon/Proceedings/Copenhagen.Offshore.Wind.2005/documents/papers/Poster/T.J.Larsen_Investigationofstabilityeffectsofano.pdf

10
Larsen T J, Hansen A M. How 2 HAWC2, the User’s Manual. Risø National Laboratory, Roskilde, 2007

11
Base K. Research in Aeroelasticity EFP-2005. Technical Report Risø-R-1559 (EN). Risø National Laboratory, Roskilde, 2006

12
Bak D C. Research in Aeroelasticity EFP-2006. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007

13
Bak D C. Research in Aeroelasticity EFP-2007. Technical Report Risø-R-1649 (EN). Risø National Laboratory, Roskilde, 2008

14
Buhl T. Research in Aeroelasticity EFP-2007-II. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009

15
Schepers J G, Nederland E C. Verification of european wind turbine design codes. In: European Wind Energy Conference (EWEC). Copenhagen, 2001

16
Riziotis V A, Voutsinas S G. GAST: A general aerodynamic and structural prediction tool for wind turbines. In: Proceeding of the 1997 European Wind Energy Conference & Exhibition (EWEC’97). Dublin, Ireland, 1997

17
Bongers P.DUWECS Reference Guide V1. 0: Delft University Wind Energy Converter Simulation Program. NASA STI/Recon Technical Report N 11294. 1990

18
van Engelen T. Control design based on aero-hydro-servo-elastic linear models from TURBU (ECN). In: Proceedings of the European Wind Energy Conference. Milan, 2007

19
Rubak R, Petersen J T. Monopile as part of aeroelastic wind turbine simulation code. In: Proceedings of the Conference Copenhagen Offshore Wind. Copenhagen, 2005

20
Fichaux N, Beurskens J, Jensen P H, Wilkes J. UpWind Project. Brussels: European Wind Energy Assciation, 2011, 58–60

21
Passon P, Kühn M. State-of-the-art and development needs of simulation codes for offshore wind turbines. 2005-<month>10</month>-<day>05</day>, http://www.ieawind.org/AnnexXXIIISecure/Subtask_2S_docs/PPT_Risoe/Risoe%202005-State_of_the_art.pdf

22
Ahlstrom A. Aeroelastic simulation of wind turbine dynamics. Dissertation for the Doctoral Degree. Stockholm: Department of Mechanics, Royal Institute of Technology, 2005

23
Lindenburg C, Snel H. Aero-elastic stability analysis tools for large wind turbine rotor blades. 2011-<month>06</month>-<day>02</day>, http://www.ecn.nl/docs/library/report/2003/rx03051.pdf

24
Schepers J G, Nederland E C. Verification of European Wind Turbine Design Codes. Technical Report ECN-C-01-053. Netherlands Energy Research Foundation (ECN), 2002

25
Elliott A S, Wright A D. ADAMS/WT: An industry-specific interactive modelling interface for wind turbine analysis. In: Musial W D, Hock S M, Berg D E, eds. The Energy-Sources Technology Conference (SED-vol. 14). New York: ASME, 1994, 111–122

26
Jonkman J M. Modeling of the UAE Wind Turbine for Refinement of FAST_AD. Technical Report TP-500-34755. National Renewable Energy Laboratory, Colorado, 2003

27
Hansen A C, Laino D J. YawDyn and AeroDyn for ADAMS. 1998-<month>08</month>-<day>31</day>, http://wind.nrel.gov/designcodes/papers/ydguide11.pdf

28
Sørensen N N, Michelsen J A, Schreck S. Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft×120 ft wind tunnel. Wind Energy (Chichester, England), 2002, 5(2-3): 151–169

DOI

29
Xu G P, Sankar L N. Application of a viscous flow methodology to the NREL Phase VI rotor. In: ASME 2002 Wind Energy Symposium (WIND2002). Reno, USA, 2002, 83–93

30
Robinson M C, Hand M M, Simms D A, Schreck S J. Horizontal axis wind turbine aerodynamics: three-dimensional, unsteady, and separated flow influences. In: The 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, 1999

31
Tangler J L, Somers D M. NREL airfoil families for HAWTs. In: American Wind Energy Association WindPower’95 Conference. Washington DC, 1995

32
Jonkman J. NREL 5 MW baseline wind turbine. Technical Report NREL/NWTC-1617. National Renewable Energy Laboratory, Colorado, 2005

33
Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory, Colorado, 2009.

34
Kallesøe B S, Hansen M H. Effects of Large Bending Deflections on Blade Flutter Limits. Report Risø-R-1642 (EN). Risø National Laboratory, Roskilde, 2008

35
Bir G, Jonkman J. Aeroelastic instabilities of large offshore and onshore wind turbines. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012069

36
Hoogedoorn E, Jacobs G B, Beyene A. Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study. Energy, 2010, 35(2): 778–785

DOI

37
Cairns D S, Blockey J C, Ehresman J. Design and feasibility of active control surfaces on wind turbine blade systems. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2008

38
Wilson D G, Berg D E, Barone M F, Berg J C, Resor B R, Lobitz D W. Active aerodynamic blade control design for load reduction on large wind turbines. In: European Wind Energy Conference (EWEC 2009). Marseille, France, 2009

39
Li B L, An Y H. Study of dynamic stability of wind turbine. Acta Energiae Solaris Sinica, 1996, 17(2): 21–29

40
Li B L, An Y H. Aeroelastic stability study for wind turbine. Acta Energiae Solaris Sinica, 1996, 17(4): 314–320

41
Li B L, An Y H. Coupled motion of the wind turbine tower pitching plus blades in flapping. Acta Energiae Solaris Sinica, 1997, 18(1): 66–68

42
Liu X, Chen Y, Ma H M, Ye Z Q. Wind turbine aerodynamic performance and structure CAD software. Acta Energiae Solaris Sinica, 2001, 22(3): 346–350

43
Liu X. Design and aeroelastic stability analysis of wind turbine blade. Dissertation for the Master’s Degree. Xi’an: Northwestern Polytechnical University, 2004

44
Cao R, Liu X, Ma H. Aero-elastic stability model of wind turbine blade based on pressure representation method and its application. Acta Energiae Solaris Sinica, 2003, 24(2): 227–231

45
Bai J Y, Yang K, Li H L, Xu J Z. Design of the horizontal axis wind turbine airfoil family. Journal of Engineering Thermophysics, 2010, 31(4): 589–592

46
Yang K, Wang H S, Xu J Z, Du J Y, Zhao X L. Optimization and design method research of wind turbine airfoils based on cfd technique. Journal of Engineering Thermophysics, 2007, 28(4): 586–588

47
Liu L, Xu J Z. The effects of turbulence model on the aerodynamic performance prediction of wind turbine blade. Journal of Engineering Thermophysics, 2009, 30(7): 1136–1139

48
Mao H J, Shi K C, Li H L, Wang J L. Modal testing and numerical simulation of large wind turbine blade. Journal of Engineering Thermophysics, 2009, 30(4): 601–604

49
Zhang C. Dynamic analysis on MW grade wind turbine. Dissertation for the Master’s Degree. Shenyang: Shenyang University of Technology, 2007

50
Shan G K, Yao X J. Mode analysis on MW grade wind turbine. Journal of Shenyang University of Technology, 2008, 30(3): 276–279

51
Shan G K, Wang X D, Yao X J, Zhang C C. Stability analysis on MW wind turbine. Acta Energiae Solaris Sinica, 2008, 29(7): 786–791

52
Yu R. Research on the aerodynamic and elastic problem of blade of the wind turbine. Dissertation for the Master’s Degree. Shenyang: Shenyang University of Technology, 2005

53
Wang F, Wang T. Wind turbine unsteady aerodynamic performance prediction based on the vortex wake method. Acta Energiae Solaris Sinica, 2009, 30(9): 1286–1291

54
Wu Y, Wang T G. Prediction of the unsteady aerodynamic characteristics of wind turbine blades with 3-D rotational effects. Chinese Journal of Computational Mechanics, 2008, 25(1): 100–103

55
Zhang W Z, Zhang T. An analytical approach to optimum design and peak performance prediction for horizontal axis wind turbines. Dongfang Electric Review, 2009, 23(2): 64–69

56
Xiao Z, Zhou Z, Chen Z B, Liu G. Numerical simulation of stall regulated wind turbine. Acta Aerodynamica Sinica, 2009, 27(4): 405–410

57
Yin J C, Xie Y, Chen P. Modal analysis comparison of beam and shell models for composite blades. In: Asia-Pacific Power And Energy Engineering Conference (APPEEC). Wuhan, China, 2009, 844–847

58
Liu W, Ma Y L, Su X Y, Huang K F. Buckling analysis of wind turbine blade using pressure distributions obtained from CFD. In: Asia-Pacific Power And Energy Engineering Conference (APPEEC). Wuhan, China, 2009, 1–4

59
Huang Z L, Liu P Q, Zhan W L. Aerodynamic outline designing and aerodynamic performance evaluation for 1.5 MW horizontal axis wind turbine. Power System and Clean Energy, 2010, 26(1): 68–72

60
Fu C, Wang Y R. Aeroelastic response analysis of wind turbine blade. Machine Design & Research, 2009, 25(1): 68–70

61
Cheng Z X, Li R N, Yang C X, Hu W R. Criterion of aerodynamic performance of large-scale offshore horizontal-axis wind turbines. Applied Mathematics and Mechanics, 2010, 31(1): 13–18

DOI

62
Li D, Li R, Yang C X, Wang X Y, Yang R, Li Y R, Zhu Y. Research of the effect on reynolds number on aerodynamic performance of special airfoil for wind turbine. Fluid Machinery, 2009, 37(12): 31–34

63
Yu H L, Chu F L, Liu Y. A summary on the stability problems of pneumatic-elasticity of wind turbine. Journal of Machine Design, 2008, 25(6): 1–3,23

64
Bao N S, Cai J W, Ni W D, Ye Z Q. Experimental power augmentation research of small horizontal axis wind turbine. Acta Energiae Solaris Sinica, 2008, 29(1): 85–89

65
Zha G B, Zhu X C, Shen X, Yu G H, Du Z H. Dynamic stall modelling of horizontal axis wind turbine in yaw condition. Acta Energiae Solaris Sinica, 2009, 30(9): 1297–1300

66
Hu D M, Tian J, Du C H. PIV experimental study on the wake flow of horizontal-axis wind turbine model. Acta Energiae Solaris Sinica, 2007, 28(2): 200–206

67
Zhang L, Wang H P, Ge W J, Zhao F. A compliant rib based morphing wing geometric parameters design. Aeronautical Computing Technique, 2009, 39(1): 1–5

68
Zhao F, Ge W J, Zhang L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft. Journal of Machine Design, 2009, 26(8): 19–22

69
Ye Z Y, Xie Y J, Wu J. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil. Engineering Mechanics, 2009, 26(4): 240–245

70
Hansen M H, Gaunaa M, Madsen H A. A Beddoes-Leishman Type Dynamic Stall Model in State-Space and Indicial Formulations. Technical Report Risø-R-1354 (EN). Risø National Laboratory, Roskilde, 2004

71
Petot D.Differential equation modeling of dynamic stall. La Recherche Aerospatiale (English Edition), 1989, (5): 59–72

72
Hansen M O L, Sørensen J N, Voutsinas S, Sørensen N, Madsen H A. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2006, 42(4): 285–330

DOI

73
Chopra I. Aeroelastic stability of an elastic circulation control rotor blade in hover. In: AIAA, ASME, ASCE, and AHS, Structures, Structural Dynamics and Materials Conference. Lake Tahoe, USA, 1983

74
Chaviaropoulos P K. Flap/lead-lag aeroelastic stability of wind turbine blades. Wind Energy (Chichester, England), 2001, 4(4): 183–200

DOI

75
Riziotis V A, Voutsinas S G, Politis E S, Chaviaropoulos P K. Aeroelastic stability of wind turbines: The problem, the methods and the issues. Wind Energy (Chichester, England), 2004, 7(4): 373–392

DOI

76
Hansen M H. Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy (Chichester, England), 2003, 6(2): 179–195

DOI

77
Chaviaropoulos P K, Nikolaou I G, Aggelis K A, Soerensen N N, Johansen J, Hansen M O L, Gaunaa M, Hambraus T, von Geyr H F, Hirsch C, Shun K, Voutsinas S G, Tzabiras G, Perivolaris Y, Dyrmose S Z. Viscous and aeroelastic effects on wind turbine blades. The VISCEL project. Part I: 3D Navier-Stokes rotor simulations. Wind Energy (Chichester, England), 2003, 6(4): 365–385

DOI

78
Chaviaropoulos P K, Soerensen N N, Hansen M O L, Nikolaou I G, Aggelis K A, Johansen J, Gaunaa M, Hambraus T, von Geyr H F, Hirsch C, Shun K, Voutsinas S G, Tzabiras G, Perivolaris Y, Dyrmose S Z. Viscous and aeroelastic effects on wind turbine blades. The VISCEL project. Part II: Aeroelastic stability investigations. Wind Energy (Chichester, England), 2003, 6(4): 387–403

DOI

79
Bertagnolio F, Sørensen N N, Hansen M, Gaunaa M. Aeroelastic simulation of a wind turbine airfoil by coupling CFD and a beam element method. In: 2003 European Wind Energy Conference and Exhibition, Madrid, Spain, 2003

80
Sørensen N N, Johansen J, Conway C. CFD Computations Of Wind Turbine Blade Loads During Standstill operation KNOW-BLADE. Task 3.1 Report Risø-R-1465 (EN). Risø National Laboratory, Roskilde, 2004

81
Hansen M O L. Aerodynamics of Wind Turbines. London: Earthscan, 2008

82
Øye S. Tjøreborg Wind Turbine: Dynamic Flow Measurement. AFM Notat VK233. Technical University of Denmark, 1992

83
Snel H, Schepers J G. JOULE1: Joint Investigation of Dynamic Inflow Effects and Implementation of an Engineering Method. Technical Report ECN-C-94–107. Energy Research Center of the Netherlands, 1994

84
Schepers J G, Snel H. JOULE2: Dynamic Inflow: Yawed Conditions and Partial Span Pitch. Technical Report ECN-C-95–056. Energy Research Center of the Netherlands, 1995

85
Schepers J G, Snel H. Final Results of the EU JOULE Projects “Dynamic Inflow”. Technical Report ECN-RX-95–062. Energy Research Center of the Netherlands, 1996

86
Øye S. Dynamic stall-simulated as time lag of separation. In: Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines. Rome, 1991

87
Larsen J W, Nielsen S R K, Krenk S. Dynamic stall model for wind turbine airfoils. Journal of Fluids and Structures, 2007, 23(7): 959–982

DOI

88
Leishman J G, Beddoes S T. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society, 1989, 34(3): 3–17

89
Leishman J G. Principles of Helicopter Aerodynamics. Cambridge: Cambridge University Press, 2006

90
Li L, Song X, He D. Structural Dynamic of Wind Turbine. Beijing: Beihang University Press, 1999

91
Wu Y, Wang T G. Calculation of three-dimensional rotational effect on blade aerodynamic characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(2): 178–182

92
Hansen M O L, Sørensen J N, Michelsen J A. A global Navier-Stokes rotor prediction model. In: Proceedings of the 35th Aerospace Sciences Meeting & Exhibit. Reno, USA, 1997

93
Sørensen N N, Hansen M O L. Rotor Performance Predictions using a Navier-Stokes Method. In: Proceedings of the 36th Aerospace Sciences Meeting and Exhibition. Reno, USA, 1998

94
Duque E, van Dam C P, Hughes S C. Navier-Stokes simulations of the NREL combined experiment phase II rotor. In: Proceedings of the 37th Aerospace Sciences Meeting and Exhibition. Reno, USA, 1999

95
Sørensen N N, Michelsen J. Aerodynamic predictions for the unsteady aerodynamics experiment phase-II rotor at the National Renewable Energy Laboratory. In: Proceedings of the 2000 ASME Wind Energy Symposium. New York: American Society of Mechanical Engineers, 2001, AIAA Paper 2000–0037

96
Fingersh L J, Simms D, Hand M, Jager D, Cotrell J, Robinson M, Schreck S, Larwwood S. Wind tunnel testing of NREL’s unsteady aerodynamics experiment. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2001

97
Simms D, Hand M, Schreck S, Fingersh L J. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. Technical Report NREL/TP-500-29494. National Renewable Energy Laboratory, Colorado, USA, 2001

98
Park Y M, Chang B H. Numerical simulation of wind turbine scale effects by using CFD. In: Proceedings of the 45th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2007

99
Sørensen N N, Johansen J. UPWIND, Aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow. In: European Wind Energy Conference & Exhibition. Milan, 2007

100
Zahle F, Sørensen N N, Madsen H A. Research in Aeroelasticity EFP-2007, Chapter 3—The Influence of Wind Shear and Tower Presence on Rotor and Wake Aerodynamics Using CFD. Technical Report Risø-R-1649(EN). Risø National Laboratory, Roskilde, 2008

101
Zahle F, Sørensen N N, Johansen J. Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy (Chichester, England), 2009, 12(6): 594–619

DOI

102
Chen X, Hao H, Tian J. Investigation on airfoil dynamic stall ofhorizontal axis wind turbine. Acta Energiae Solaris Sinica, 2003, 24(6): 735–740

103
Zhao X, Xiao J, Xi D. The design of airfoils and the simulation of dynamic stall of horizontal axis wind turbines. Acta Energiae Solaris Sinica, 2009, 30(3): 348–354

104
Wang G Y, Dong H T. Numerical simulation of aerodynamic for horizontal axis wind turbine. Solar Energy, 2008, (3): 30–33 (in Chinese)

105
Yang R, Li R N, Zhang S A, Li D S. A Study on the turbulence models for the CFD calculation of the horizontal axis wind turbine. Journal of Gansu Sciences, 2008, 20(4): 90–93

106
Lei Y S, Zhou Z G. Large eddy simulation investigation on horizontal axis wind turbine’s aerodynamic performance. Energy Research & Utilization, 2008, (5): 15–18

107
Strelets M. Detached eddy simulation of massively separated flows. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2001, AIAA Paper 2001–0879

108
Johansen J, Sørensen N N, Michelsen J A, Schreck S.Detached-eddy simulation of flow around the NREL phase VI blade. Wind Energy, 2002, 5(2,3): 185–197

109
Laird D L. A numerical manufacturing and design tool odyssey. In: Proceedings of AIAA/ASME. Wind Energy Symposium. Reno, USA, 2001, Paper No. <patent>AIAA-2001-0023</patent>

110
Kallesøe B S, Bjerring P. Global Blade Deflections Effect on Local Airfoil Deformation and Performance. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009

111
Malcolm D J, Laird D L. Modeling of blades as equivalent beams for aeroelastic analysis. In: 2003 ASME Wind Energy Symposium AIAA/ASME. Reno, USA, 2003, 293–303

112
Hodges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA Report NASA TND-7818. 1975

113
Kallesøe B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations. Wind Energy (Chichester, England), 2007, 10(3): 209–230

DOI

114
Lim I, Lee I. Aeroelastic analysis of bearingless rotors with a composite flexbeam. Composite Structures, 2009, 88(4): 570–578

DOI

115
Petersen J T, Madsen H A, Bjørck A, Enevoldsen P, Øye S, Ganander H, Winkelaar D. Prediction of Dynamic Loads and Induced Vibrations in Stall. Technical Report Risø-R-1045 (EN). Risø National Laboratory, Roskilde, 1998

116
Thomsen K. Petersen J T, Nim E, Øye S, Petersen B. A method for determination of damping for edgewise blade vibrations. Wind Energy (Chichester, England), 2000, 3(4): 233–246

DOI

117
Rasmussen F, Petersen J T, Madsen H A. Dynamic stall and aerodynamic damping. Journal of Solar Energy Engineering, 1999, 121(3): 150–155

DOI

118
Hansen M H. Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energy (Chichester, England), 2004, 7(2): 133–143

DOI

119
Lindenburg C, Snel H. Aero-elastic stability analysis tools for large wind turbine rotor blades. In: Proceeding of 2004 European Wind Energy Conference, London, 2004

120
Larsen T J, Madsen H A, Hansen A, Thomsen K. Investigations of stability effects of an offshore wind turbine using the new aeroelastic code HAWC2. In: Proceedings of the conference Copenhagen Offshore Wind. Copenhagen, 2005

121
Lobitz D W. Aeroelastic stability predictions for a MW-sized blade. Wind Energy (Chichester, England), 2004, 7(3): 211–224

DOI

122
Madsen H A, Mikkelsen R, Sørensen N N, Hansen M O L, Johansen J. Influence of Wind Shear on Rotor Aerodynamics, Power and Loads. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007

123
Zahle F, Madsen H A, Sørensen N N. Evaluation of Tower Shadow Effects on Various Wind Turbine Concepts. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009

124
Thomsen K, Madsen H A. A new simulation method for turbines in wake-applied to extreme response during operation. Wind Energy (Chichester, England), 2005, 8(1): 35–47

DOI

125
Madsen H A, Larsen G C, Thomsen K. Wake flow characteristics in low ambient turbulence conditions. In: Proceedings of the Conference Copenhagen Offshore Wind. Copenhagen, 2005

126
Larsen T J. Hensyn til store udbøjninger implementeret I HAWC. In: Madsen A, ed. Forskning i aeroelasticitet EFP-2001. Roskilde, 2001, 49–64

127
Politis E, Riziotis V. The Importance of Nonlinear Effects Identified by Aerodynamic and Aero-Elastic Simulations on the 5 MW Reference Wind Turbine. Deliverable D2.1, Project UpWind. European Wind Energy Assciation, Brussels, 2007

128
Kallesøe B S. Large Blade Deformations Effect on Flutter Boundaries. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007

129
Hansen M H, Kallesøe B S. Some Nonlinear Effects on the Flutter Speed and Blade Stability. Technical Report Risø-R-1649 (EN). Risø National Laboratory, Roskilde, 2008

130
Kallesøe B S, Bjerring P. Global Blade Deflections Effect on Local Airfoil Deformation and Performance. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009

131
Migliore P G, Miller L S, Quandt G A. Wind Turbine Trailing Edge Aerodynamic Brakes. Technical Report NREL/TP-441-7805. National Renewable Energy Laboratory, Colorado, 1995

132
Miller L S. Experimental Investigation of Aerodynamic Devices for Wind Turbine Rotational Speed Control, Phase 1. Technical Report NREL/TP-441-20507. National Renewable Energy Laboratory, Colorado, 1995

133
Marrant B, van Holten T. Comparison of smart rotor blade concepts for large offshore wind turbines. In: Proceedings of the Offshore Wind Energy and Other Renewable Energies in Mediterranean and European Seas. Brindisi, Italy, 2006

134
Barlas T K, van Kuik G A M. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 2010, 46(1): 1–27

DOI

135
Kota S, Hetrick J, Osborn R, Donald P, Edmund P, Peter F, Carl T. Design and application of compliant mechanisms for morphing aircraft structures. In: Anderson E H, ed. Proceedings of the SPIE. Bellingham, USA, 2003, 24–33

136
Nakafuji D T Y, van Dam C P, Smith R L, Collins S D. Active load control for airfoils using microtabs. Journal of Solar Energy Engineering, 2001, 123(4): 282–288

DOI

137
Troldborg N. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry. Wind Engineering, 2005, 29(2): 89–114

DOI

138
Bergami L. Aeroelastic Stability of a 2D Airfoil Section Equipped with a Trailing Edge Flap. 2008, Technical Report Risø-R-1663(EN). Risø National Laboratory, Roskilde, 2008

139
Bak C. Gaunaa1 M, Andersen P B, Buhl T, Hansen P, Clemmensen K, Møller R. Wind tunnel test on wind turbine airfoil with adaptive trailing edge geometry. In: Proceedings of the 45th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2007

140
Lackner M A, Kuik V G. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 2009

141
Chow R, van Dam C P. Computational investigations of deploying load control microtabs on a wind turbine airfoil. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012127

142
Mayda E A, van Dam C P, Yen-Nakafuji D T. Computational investigation of finite width microtabs for aerodynamic load control. In: Proceedings of the 43th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2005

143
Van Dam C P, Chow R, Zayas J R, Berg D E. Computational investigations of small deploying tabs and flaps for aerodynamic load control. In: 2nd EWEA/EAWE Special Topic Conference “The Science of making Torque from Wind”, Lyngby, DK, 2007

144
Zhu W X, Yu G L, Tian M F, Shen Z H. Experimental investigation on performance enhancing for wind turbine by mounting Gurney flap to the blade. Renewable Energy Resources, 2008, (2): 24–26

145
Shen Z H, Xia S Z, Gui Q Y, Shen H Y. A numerical study of aerodynamic characteristics of modified airfoil with gurney flap. Acta Energiae Solaris Sinica, 2007, 28(9): 988–991

146
Su M, Li W.Numerical simulation on lift enhancement of 2D aerofoil Gurney flaps of wind turbine. Renewable Energy Resources, 2007, (2): 60–62

147
Hao L, Qiao Z, Song K, Song W. Research on aerodynamic performance of wind turbine blade airfoil using microtab. Aeronautical Computing Technique, 2010, (2): 24–27

148
Barrett R M, Brozoski F. Adaptive flight control surfaces, wings, rotors, and active aerodynamics. In: Proceedings of SPIE. The International Society for Optical Engineering. Washington, 1996

149
Straub F K, Kennedy D K, Domzalski D B, Hassan A A, Ngo H, Anand V, Birchette T. Smart material-actuated rotor technology-SMART. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 249–260

DOI

150
Gordaninejad F, Wu W. A two-dimensional shape memory alloy/elastomer actuator. International Journal of Solids and Structures, 2001, 38(19): 3393–3409

DOI

151
Ghomshei M M, Tabandeh N, Ghazavi A, Gordaninejad F. A three-dimensional shape memory alloy/elastomer actuator. Composites. Part B, Engineering, 2001, 32(5): 441–449

DOI

152
Chandra R. Active shape control of composite blades using shape memory actuation. Smart Materials and Structures, 2001, 10(5): 318–326

DOI

153
Chopra I. Review of state of art of smart structures and integrated systems. AIAA Journal, 2002, 40(11): 2145–2187

DOI

154
Kennedy D K, Straub F K, Schetky L M D, Chaudhry Z, Roznoy R. Development of an SMA actuator for in-flight rotor blade tracking. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 235–248

DOI

155
Barlas T K, van Kuik G A M. State of the art and prospectives of smart rotor control for wind turbines. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012080

156
Lindroos T, Sippola M, Koskinen J. UPWIND-SMA actuated adaptive airfoil. In: 56th IEA Topical Expert Meeting. Aluquerque, USA, 2008, 167–178

157
Van Kuik G A M. 1B3 - Final Report: showing the potential of smart rotor blades and rotor control. 2011-<month>01</month>-<day>30</day>, http://www.upwind.eu/media/849/Upwind%20D_1B3_12%20-%20End%20report.pdf

158
Seidel M, Mutius M V, Steudel D. Design and load calculations for offshore foundations of a 5 MW turbine. In: Conference Proceedings DEWEK 2004. Wilhelmshaven, 2004

159
Seidel M, Mutius M V, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the Offshore Wind Conference. Copenhagen, 2005

160
Jonkman J M, Sclavounos P D. Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines. In: Proceedings of the 44th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2006

Outlines

/