Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives

Pinting ZHANG, Shuhong HUANG

PDF(296 KB)
PDF(296 KB)
Front. Energy ›› DOI: 10.1007/s11708-011-0166-6
REVIEW ARTICLE
REVIEW ARTICLE

Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives

Author information +
History +

Abstract

Aeroelasticity has become a critical issue for Multi-Megawatt wind turbine due to the longer and more flexible blade. In this paper, the development of aeroelasticity and aeroelastic codes for wind turbine is reviewed and the aeroelastic models for wind turbine blade are described, based on which, the current research focuses for large scale wind turbine are discussed, including instability problems for onshore and offshore wind turbines, effects of complex inflow, nonlinear effects of large blade deflection, smart structure technologies, and aerohydroelasticity. Finally, the future development of aeroelastic code for large scale wind turbine: aeroservoelasticity and smart rotor control; nonlinear aeroelasticity due to large blade deflection; full-scale 3D computational fluid dynamics (CFD) solution for dynamics; and aerohydroelasticity are presented.

Keywords

wind turbine / aeroelasticity / aeroelastic code

Cite this article

Download citation ▾
Pinting ZHANG, Shuhong HUANG. Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives. Front Energ, https://doi.org/10.1007/s11708-011-0166-6

References

[1]
Quarton D C. The evolution of wind turbine design analysis-a twenty year progress review. Wind Energy (Chichester, England), 1998, 1(S1): 5–24
CrossRef Google scholar
[2]
Friedmann P P. Aeroelastic modeling of large wind turbines. Journal of the American Helicopter Society, 1976, 21(4): 17–28
CrossRef Google scholar
[3]
Ottens H, Zwaan R J. Description of a method to calculate the aeroelastic stability of a 2-bladed horizontal axis wind turbine. Technical Report NLR/TR-78115L. NLR National Aerospace Laboratory, Roskilde, 1978
[4]
Vollan A. Aeroelastic stability and dynamic response calculations for wind energy converters. In: 4th International Symposium on Wind Energy Systems. Stockholm, Sweden, 1982, 427–444
[5]
Garrad A D. Dynamics of wind turbines. IEE Proceedings. Part A. Physical Science, Measurements and Instrumentation, Management and Education, Reviews, 1983, 130(9): 523–530
CrossRef Google scholar
[6]
Bossanyi E A. GH Bladed Theory and User Manuals. England: Garrad Hassan and Partners Limited, 1996
[7]
Øye S. FLEX4 Simulation of wind turbine dynamics. In: Pedersen B M, ed. Proceedings of State of the Art of Aeroelastic Codes for Wind Turbine Calculations, 28th Meeting of Experts, International Energy Agency, Annex XI, Lyngby. Copenhagen: Technical University of Denmark, 1996, 71–77
[8]
Rasmussen F, Hansen M H, Thomsen K, Larsen T J, Bertagnolio F, Johansen J, Madsen H A, Bak C, Hansen A M. Present status of aeroelasticity of wind turbines. Wind Energy (Chichester, England), 2003, 6(3): 213–228
CrossRef Google scholar
[9]
Larsen T J, Madsen H A, Hansen A M, Thomsen K. Investigations of stability effects of an offshore wind turbine using the new aeroelastic code HAWC2. 2005-<month>10</month>-<day>03</day>, http://wind.nrel.gov/public/SeaCon/Proceedings/Copenhagen.Offshore.Wind.2005/documents/papers/Poster/T.J.Larsen_Investigationofstabilityeffectsofano.pdf
[10]
Larsen T J, Hansen A M. How 2 HAWC2, the User’s Manual. Risø National Laboratory, Roskilde, 2007
[11]
Base K. Research in Aeroelasticity EFP-2005. Technical Report Risø-R-1559 (EN). Risø National Laboratory, Roskilde, 2006
[12]
Bak D C. Research in Aeroelasticity EFP-2006. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007
[13]
Bak D C. Research in Aeroelasticity EFP-2007. Technical Report Risø-R-1649 (EN). Risø National Laboratory, Roskilde, 2008
[14]
Buhl T. Research in Aeroelasticity EFP-2007-II. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009
[15]
Schepers J G, Nederland E C. Verification of european wind turbine design codes. In: European Wind Energy Conference (EWEC). Copenhagen, 2001
[16]
Riziotis V A, Voutsinas S G. GAST: A general aerodynamic and structural prediction tool for wind turbines. In: Proceeding of the 1997 European Wind Energy Conference & Exhibition (EWEC’97). Dublin, Ireland, 1997
[17]
Bongers P.DUWECS Reference Guide V1. 0: Delft University Wind Energy Converter Simulation Program. NASA STI/Recon Technical Report N 11294. 1990
[18]
van Engelen T. Control design based on aero-hydro-servo-elastic linear models from TURBU (ECN). In: Proceedings of the European Wind Energy Conference. Milan, 2007
[19]
Rubak R, Petersen J T. Monopile as part of aeroelastic wind turbine simulation code. In: Proceedings of the Conference Copenhagen Offshore Wind. Copenhagen, 2005
[20]
Fichaux N, Beurskens J, Jensen P H, Wilkes J. UpWind Project. Brussels: European Wind Energy Assciation, 2011, 58–60
[21]
Passon P, Kühn M. State-of-the-art and development needs of simulation codes for offshore wind turbines. 2005-<month>10</month>-<day>05</day>, http://www.ieawind.org/AnnexXXIIISecure/Subtask_2S_docs/PPT_Risoe/Risoe%202005-State_of_the_art.pdf
[22]
Ahlstrom A. Aeroelastic simulation of wind turbine dynamics. Dissertation for the Doctoral Degree. Stockholm: Department of Mechanics, Royal Institute of Technology, 2005
[23]
Lindenburg C, Snel H. Aero-elastic stability analysis tools for large wind turbine rotor blades. 2011-<month>06</month>-<day>02</day>, http://www.ecn.nl/docs/library/report/2003/rx03051.pdf
[24]
Schepers J G, Nederland E C. Verification of European Wind Turbine Design Codes. Technical Report ECN-C-01-053. Netherlands Energy Research Foundation (ECN), 2002
[25]
Elliott A S, Wright A D. ADAMS/WT: An industry-specific interactive modelling interface for wind turbine analysis. In: Musial W D, Hock S M, Berg D E, eds. The Energy-Sources Technology Conference (SED-vol. 14). New York: ASME, 1994, 111–122
[26]
Jonkman J M. Modeling of the UAE Wind Turbine for Refinement of FAST_AD. Technical Report TP-500-34755. National Renewable Energy Laboratory, Colorado, 2003
[27]
Hansen A C, Laino D J. YawDyn and AeroDyn for ADAMS. 1998-<month>08</month>-<day>31</day>, http://wind.nrel.gov/designcodes/papers/ydguide11.pdf
[28]
Sørensen N N, Michelsen J A, Schreck S. Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft×120 ft wind tunnel. Wind Energy (Chichester, England), 2002, 5(2-3): 151–169
CrossRef Google scholar
[29]
Xu G P, Sankar L N. Application of a viscous flow methodology to the NREL Phase VI rotor. In: ASME 2002 Wind Energy Symposium (WIND2002). Reno, USA, 2002, 83–93
[30]
Robinson M C, Hand M M, Simms D A, Schreck S J. Horizontal axis wind turbine aerodynamics: three-dimensional, unsteady, and separated flow influences. In: The 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, 1999
[31]
Tangler J L, Somers D M. NREL airfoil families for HAWTs. In: American Wind Energy Association WindPower’95 Conference. Washington DC, 1995
[32]
Jonkman J. NREL 5 MW baseline wind turbine. Technical Report NREL/NWTC-1617. National Renewable Energy Laboratory, Colorado, 2005
[33]
Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory, Colorado, 2009.
[34]
Kallesøe B S, Hansen M H. Effects of Large Bending Deflections on Blade Flutter Limits. Report Risø-R-1642 (EN). Risø National Laboratory, Roskilde, 2008
[35]
Bir G, Jonkman J. Aeroelastic instabilities of large offshore and onshore wind turbines. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012069
[36]
Hoogedoorn E, Jacobs G B, Beyene A. Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study. Energy, 2010, 35(2): 778–785
CrossRef Google scholar
[37]
Cairns D S, Blockey J C, Ehresman J. Design and feasibility of active control surfaces on wind turbine blade systems. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2008
[38]
Wilson D G, Berg D E, Barone M F, Berg J C, Resor B R, Lobitz D W. Active aerodynamic blade control design for load reduction on large wind turbines. In: European Wind Energy Conference (EWEC 2009). Marseille, France, 2009
[39]
Li B L, An Y H. Study of dynamic stability of wind turbine. Acta Energiae Solaris Sinica, 1996, 17(2): 21–29
[40]
Li B L, An Y H. Aeroelastic stability study for wind turbine. Acta Energiae Solaris Sinica, 1996, 17(4): 314–320
[41]
Li B L, An Y H. Coupled motion of the wind turbine tower pitching plus blades in flapping. Acta Energiae Solaris Sinica, 1997, 18(1): 66–68
[42]
Liu X, Chen Y, Ma H M, Ye Z Q. Wind turbine aerodynamic performance and structure CAD software. Acta Energiae Solaris Sinica, 2001, 22(3): 346–350
[43]
Liu X. Design and aeroelastic stability analysis of wind turbine blade. Dissertation for the Master’s Degree. Xi’an: Northwestern Polytechnical University, 2004
[44]
Cao R, Liu X, Ma H. Aero-elastic stability model of wind turbine blade based on pressure representation method and its application. Acta Energiae Solaris Sinica, 2003, 24(2): 227–231
[45]
Bai J Y, Yang K, Li H L, Xu J Z. Design of the horizontal axis wind turbine airfoil family. Journal of Engineering Thermophysics, 2010, 31(4): 589–592
[46]
Yang K, Wang H S, Xu J Z, Du J Y, Zhao X L. Optimization and design method research of wind turbine airfoils based on cfd technique. Journal of Engineering Thermophysics, 2007, 28(4): 586–588
[47]
Liu L, Xu J Z. The effects of turbulence model on the aerodynamic performance prediction of wind turbine blade. Journal of Engineering Thermophysics, 2009, 30(7): 1136–1139
[48]
Mao H J, Shi K C, Li H L, Wang J L. Modal testing and numerical simulation of large wind turbine blade. Journal of Engineering Thermophysics, 2009, 30(4): 601–604
[49]
Zhang C. Dynamic analysis on MW grade wind turbine. Dissertation for the Master’s Degree. Shenyang: Shenyang University of Technology, 2007
[50]
Shan G K, Yao X J. Mode analysis on MW grade wind turbine. Journal of Shenyang University of Technology, 2008, 30(3): 276–279
[51]
Shan G K, Wang X D, Yao X J, Zhang C C. Stability analysis on MW wind turbine. Acta Energiae Solaris Sinica, 2008, 29(7): 786–791
[52]
Yu R. Research on the aerodynamic and elastic problem of blade of the wind turbine. Dissertation for the Master’s Degree. Shenyang: Shenyang University of Technology, 2005
[53]
Wang F, Wang T. Wind turbine unsteady aerodynamic performance prediction based on the vortex wake method. Acta Energiae Solaris Sinica, 2009, 30(9): 1286–1291
[54]
Wu Y, Wang T G. Prediction of the unsteady aerodynamic characteristics of wind turbine blades with 3-D rotational effects. Chinese Journal of Computational Mechanics, 2008, 25(1): 100–103
[55]
Zhang W Z, Zhang T. An analytical approach to optimum design and peak performance prediction for horizontal axis wind turbines. Dongfang Electric Review, 2009, 23(2): 64–69
[56]
Xiao Z, Zhou Z, Chen Z B, Liu G. Numerical simulation of stall regulated wind turbine. Acta Aerodynamica Sinica, 2009, 27(4): 405–410
[57]
Yin J C, Xie Y, Chen P. Modal analysis comparison of beam and shell models for composite blades. In: Asia-Pacific Power And Energy Engineering Conference (APPEEC). Wuhan, China, 2009, 844–847
[58]
Liu W, Ma Y L, Su X Y, Huang K F. Buckling analysis of wind turbine blade using pressure distributions obtained from CFD. In: Asia-Pacific Power And Energy Engineering Conference (APPEEC). Wuhan, China, 2009, 1–4
[59]
Huang Z L, Liu P Q, Zhan W L. Aerodynamic outline designing and aerodynamic performance evaluation for 1.5 MW horizontal axis wind turbine. Power System and Clean Energy, 2010, 26(1): 68–72
[60]
Fu C, Wang Y R. Aeroelastic response analysis of wind turbine blade. Machine Design & Research, 2009, 25(1): 68–70
[61]
Cheng Z X, Li R N, Yang C X, Hu W R. Criterion of aerodynamic performance of large-scale offshore horizontal-axis wind turbines. Applied Mathematics and Mechanics, 2010, 31(1): 13–18
CrossRef Google scholar
[62]
Li D, Li R, Yang C X, Wang X Y, Yang R, Li Y R, Zhu Y. Research of the effect on reynolds number on aerodynamic performance of special airfoil for wind turbine. Fluid Machinery, 2009, 37(12): 31–34
[63]
Yu H L, Chu F L, Liu Y. A summary on the stability problems of pneumatic-elasticity of wind turbine. Journal of Machine Design, 2008, 25(6): 1–3,23
[64]
Bao N S, Cai J W, Ni W D, Ye Z Q. Experimental power augmentation research of small horizontal axis wind turbine. Acta Energiae Solaris Sinica, 2008, 29(1): 85–89
[65]
Zha G B, Zhu X C, Shen X, Yu G H, Du Z H. Dynamic stall modelling of horizontal axis wind turbine in yaw condition. Acta Energiae Solaris Sinica, 2009, 30(9): 1297–1300
[66]
Hu D M, Tian J, Du C H. PIV experimental study on the wake flow of horizontal-axis wind turbine model. Acta Energiae Solaris Sinica, 2007, 28(2): 200–206
[67]
Zhang L, Wang H P, Ge W J, Zhao F. A compliant rib based morphing wing geometric parameters design. Aeronautical Computing Technique, 2009, 39(1): 1–5
[68]
Zhao F, Ge W J, Zhang L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft. Journal of Machine Design, 2009, 26(8): 19–22
[69]
Ye Z Y, Xie Y J, Wu J. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil. Engineering Mechanics, 2009, 26(4): 240–245
[70]
Hansen M H, Gaunaa M, Madsen H A. A Beddoes-Leishman Type Dynamic Stall Model in State-Space and Indicial Formulations. Technical Report Risø-R-1354 (EN). Risø National Laboratory, Roskilde, 2004
[71]
Petot D.Differential equation modeling of dynamic stall. La Recherche Aerospatiale (English Edition), 1989, (5): 59–72
[72]
Hansen M O L, Sørensen J N, Voutsinas S, Sørensen N, Madsen H A. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2006, 42(4): 285–330
CrossRef Google scholar
[73]
Chopra I. Aeroelastic stability of an elastic circulation control rotor blade in hover. In: AIAA, ASME, ASCE, and AHS, Structures, Structural Dynamics and Materials Conference. Lake Tahoe, USA, 1983
[74]
Chaviaropoulos P K. Flap/lead-lag aeroelastic stability of wind turbine blades. Wind Energy (Chichester, England), 2001, 4(4): 183–200
CrossRef Google scholar
[75]
Riziotis V A, Voutsinas S G, Politis E S, Chaviaropoulos P K. Aeroelastic stability of wind turbines: The problem, the methods and the issues. Wind Energy (Chichester, England), 2004, 7(4): 373–392
CrossRef Google scholar
[76]
Hansen M H. Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy (Chichester, England), 2003, 6(2): 179–195
CrossRef Google scholar
[77]
Chaviaropoulos P K, Nikolaou I G, Aggelis K A, Soerensen N N, Johansen J, Hansen M O L, Gaunaa M, Hambraus T, von Geyr H F, Hirsch C, Shun K, Voutsinas S G, Tzabiras G, Perivolaris Y, Dyrmose S Z. Viscous and aeroelastic effects on wind turbine blades. The VISCEL project. Part I: 3D Navier-Stokes rotor simulations. Wind Energy (Chichester, England), 2003, 6(4): 365–385
CrossRef Google scholar
[78]
Chaviaropoulos P K, Soerensen N N, Hansen M O L, Nikolaou I G, Aggelis K A, Johansen J, Gaunaa M, Hambraus T, von Geyr H F, Hirsch C, Shun K, Voutsinas S G, Tzabiras G, Perivolaris Y, Dyrmose S Z. Viscous and aeroelastic effects on wind turbine blades. The VISCEL project. Part II: Aeroelastic stability investigations. Wind Energy (Chichester, England), 2003, 6(4): 387–403
CrossRef Google scholar
[79]
Bertagnolio F, Sørensen N N, Hansen M, Gaunaa M. Aeroelastic simulation of a wind turbine airfoil by coupling CFD and a beam element method. In: 2003 European Wind Energy Conference and Exhibition, Madrid, Spain, 2003
[80]
Sørensen N N, Johansen J, Conway C. CFD Computations Of Wind Turbine Blade Loads During Standstill operation KNOW-BLADE. Task 3.1 Report Risø-R-1465 (EN). Risø National Laboratory, Roskilde, 2004
[81]
Hansen M O L. Aerodynamics of Wind Turbines. London: Earthscan, 2008
[82]
Øye S. Tjøreborg Wind Turbine: Dynamic Flow Measurement. AFM Notat VK233. Technical University of Denmark, 1992
[83]
Snel H, Schepers J G. JOULE1: Joint Investigation of Dynamic Inflow Effects and Implementation of an Engineering Method. Technical Report ECN-C-94–107. Energy Research Center of the Netherlands, 1994
[84]
Schepers J G, Snel H. JOULE2: Dynamic Inflow: Yawed Conditions and Partial Span Pitch. Technical Report ECN-C-95–056. Energy Research Center of the Netherlands, 1995
[85]
Schepers J G, Snel H. Final Results of the EU JOULE Projects “Dynamic Inflow”. Technical Report ECN-RX-95–062. Energy Research Center of the Netherlands, 1996
[86]
Øye S. Dynamic stall-simulated as time lag of separation. In: Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines. Rome, 1991
[87]
Larsen J W, Nielsen S R K, Krenk S. Dynamic stall model for wind turbine airfoils. Journal of Fluids and Structures, 2007, 23(7): 959–982
CrossRef Google scholar
[88]
Leishman J G, Beddoes S T. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society, 1989, 34(3): 3–17
[89]
Leishman J G. Principles of Helicopter Aerodynamics. Cambridge: Cambridge University Press, 2006
[90]
Li L, Song X, He D. Structural Dynamic of Wind Turbine. Beijing: Beihang University Press, 1999
[91]
Wu Y, Wang T G. Calculation of three-dimensional rotational effect on blade aerodynamic characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(2): 178–182
[92]
Hansen M O L, Sørensen J N, Michelsen J A. A global Navier-Stokes rotor prediction model. In: Proceedings of the 35th Aerospace Sciences Meeting & Exhibit. Reno, USA, 1997
[93]
Sørensen N N, Hansen M O L. Rotor Performance Predictions using a Navier-Stokes Method. In: Proceedings of the 36th Aerospace Sciences Meeting and Exhibition. Reno, USA, 1998
[94]
Duque E, van Dam C P, Hughes S C. Navier-Stokes simulations of the NREL combined experiment phase II rotor. In: Proceedings of the 37th Aerospace Sciences Meeting and Exhibition. Reno, USA, 1999
[95]
Sørensen N N, Michelsen J. Aerodynamic predictions for the unsteady aerodynamics experiment phase-II rotor at the National Renewable Energy Laboratory. In: Proceedings of the 2000 ASME Wind Energy Symposium. New York: American Society of Mechanical Engineers, 2001, AIAA Paper 2000–0037
[96]
Fingersh L J, Simms D, Hand M, Jager D, Cotrell J, Robinson M, Schreck S, Larwwood S. Wind tunnel testing of NREL’s unsteady aerodynamics experiment. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2001
[97]
Simms D, Hand M, Schreck S, Fingersh L J. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. Technical Report NREL/TP-500-29494. National Renewable Energy Laboratory, Colorado, USA, 2001
[98]
Park Y M, Chang B H. Numerical simulation of wind turbine scale effects by using CFD. In: Proceedings of the 45th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2007
[99]
Sørensen N N, Johansen J. UPWIND, Aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow. In: European Wind Energy Conference & Exhibition. Milan, 2007
[100]
Zahle F, Sørensen N N, Madsen H A. Research in Aeroelasticity EFP-2007, Chapter 3—The Influence of Wind Shear and Tower Presence on Rotor and Wake Aerodynamics Using CFD. Technical Report Risø-R-1649(EN). Risø National Laboratory, Roskilde, 2008
[101]
Zahle F, Sørensen N N, Johansen J. Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy (Chichester, England), 2009, 12(6): 594–619
CrossRef Google scholar
[102]
Chen X, Hao H, Tian J. Investigation on airfoil dynamic stall ofhorizontal axis wind turbine. Acta Energiae Solaris Sinica, 2003, 24(6): 735–740
[103]
Zhao X, Xiao J, Xi D. The design of airfoils and the simulation of dynamic stall of horizontal axis wind turbines. Acta Energiae Solaris Sinica, 2009, 30(3): 348–354
[104]
Wang G Y, Dong H T. Numerical simulation of aerodynamic for horizontal axis wind turbine. Solar Energy, 2008, (3): 30–33 (in Chinese)
[105]
Yang R, Li R N, Zhang S A, Li D S. A Study on the turbulence models for the CFD calculation of the horizontal axis wind turbine. Journal of Gansu Sciences, 2008, 20(4): 90–93
[106]
Lei Y S, Zhou Z G. Large eddy simulation investigation on horizontal axis wind turbine’s aerodynamic performance. Energy Research & Utilization, 2008, (5): 15–18
[107]
Strelets M. Detached eddy simulation of massively separated flows. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2001, AIAA Paper 2001–0879
[108]
Johansen J, Sørensen N N, Michelsen J A, Schreck S.Detached-eddy simulation of flow around the NREL phase VI blade. Wind Energy, 2002, 5(2,3): 185–197
[109]
Laird D L. A numerical manufacturing and design tool odyssey. In: Proceedings of AIAA/ASME. Wind Energy Symposium. Reno, USA, 2001, Paper No. <patent>AIAA-2001-0023</patent>
[110]
Kallesøe B S, Bjerring P. Global Blade Deflections Effect on Local Airfoil Deformation and Performance. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009
[111]
Malcolm D J, Laird D L. Modeling of blades as equivalent beams for aeroelastic analysis. In: 2003 ASME Wind Energy Symposium AIAA/ASME. Reno, USA, 2003, 293–303
[112]
Hodges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA Report NASA TND-7818. 1975
[113]
Kallesøe B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations. Wind Energy (Chichester, England), 2007, 10(3): 209–230
CrossRef Google scholar
[114]
Lim I, Lee I. Aeroelastic analysis of bearingless rotors with a composite flexbeam. Composite Structures, 2009, 88(4): 570–578
CrossRef Google scholar
[115]
Petersen J T, Madsen H A, Bjørck A, Enevoldsen P, Øye S, Ganander H, Winkelaar D. Prediction of Dynamic Loads and Induced Vibrations in Stall. Technical Report Risø-R-1045 (EN). Risø National Laboratory, Roskilde, 1998
[116]
Thomsen K. Petersen J T, Nim E, Øye S, Petersen B. A method for determination of damping for edgewise blade vibrations. Wind Energy (Chichester, England), 2000, 3(4): 233–246
CrossRef Google scholar
[117]
Rasmussen F, Petersen J T, Madsen H A. Dynamic stall and aerodynamic damping. Journal of Solar Energy Engineering, 1999, 121(3): 150–155
CrossRef Google scholar
[118]
Hansen M H. Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energy (Chichester, England), 2004, 7(2): 133–143
CrossRef Google scholar
[119]
Lindenburg C, Snel H. Aero-elastic stability analysis tools for large wind turbine rotor blades. In: Proceeding of 2004 European Wind Energy Conference, London, 2004
[120]
Larsen T J, Madsen H A, Hansen A, Thomsen K. Investigations of stability effects of an offshore wind turbine using the new aeroelastic code HAWC2. In: Proceedings of the conference Copenhagen Offshore Wind. Copenhagen, 2005
[121]
Lobitz D W. Aeroelastic stability predictions for a MW-sized blade. Wind Energy (Chichester, England), 2004, 7(3): 211–224
CrossRef Google scholar
[122]
Madsen H A, Mikkelsen R, Sørensen N N, Hansen M O L, Johansen J. Influence of Wind Shear on Rotor Aerodynamics, Power and Loads. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007
[123]
Zahle F, Madsen H A, Sørensen N N. Evaluation of Tower Shadow Effects on Various Wind Turbine Concepts. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009
[124]
Thomsen K, Madsen H A. A new simulation method for turbines in wake-applied to extreme response during operation. Wind Energy (Chichester, England), 2005, 8(1): 35–47
CrossRef Google scholar
[125]
Madsen H A, Larsen G C, Thomsen K. Wake flow characteristics in low ambient turbulence conditions. In: Proceedings of the Conference Copenhagen Offshore Wind. Copenhagen, 2005
[126]
Larsen T J. Hensyn til store udbøjninger implementeret I HAWC. In: Madsen A, ed. Forskning i aeroelasticitet EFP-2001. Roskilde, 2001, 49–64
[127]
Politis E, Riziotis V. The Importance of Nonlinear Effects Identified by Aerodynamic and Aero-Elastic Simulations on the 5 MW Reference Wind Turbine. Deliverable D2.1, Project UpWind. European Wind Energy Assciation, Brussels, 2007
[128]
Kallesøe B S. Large Blade Deformations Effect on Flutter Boundaries. Technical Report Risø-R-1611 (EN). Risø National Laboratory, Roskilde, 2007
[129]
Hansen M H, Kallesøe B S. Some Nonlinear Effects on the Flutter Speed and Blade Stability. Technical Report Risø-R-1649 (EN). Risø National Laboratory, Roskilde, 2008
[130]
Kallesøe B S, Bjerring P. Global Blade Deflections Effect on Local Airfoil Deformation and Performance. Technical Report Risø-R-1698 (EN). Risø National Laboratory, Roskilde, 2009
[131]
Migliore P G, Miller L S, Quandt G A. Wind Turbine Trailing Edge Aerodynamic Brakes. Technical Report NREL/TP-441-7805. National Renewable Energy Laboratory, Colorado, 1995
[132]
Miller L S. Experimental Investigation of Aerodynamic Devices for Wind Turbine Rotational Speed Control, Phase 1. Technical Report NREL/TP-441-20507. National Renewable Energy Laboratory, Colorado, 1995
[133]
Marrant B, van Holten T. Comparison of smart rotor blade concepts for large offshore wind turbines. In: Proceedings of the Offshore Wind Energy and Other Renewable Energies in Mediterranean and European Seas. Brindisi, Italy, 2006
[134]
Barlas T K, van Kuik G A M. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 2010, 46(1): 1–27
CrossRef Google scholar
[135]
Kota S, Hetrick J, Osborn R, Donald P, Edmund P, Peter F, Carl T. Design and application of compliant mechanisms for morphing aircraft structures. In: Anderson E H, ed. Proceedings of the SPIE. Bellingham, USA, 2003, 24–33
[136]
Nakafuji D T Y, van Dam C P, Smith R L, Collins S D. Active load control for airfoils using microtabs. Journal of Solar Energy Engineering, 2001, 123(4): 282–288
CrossRef Google scholar
[137]
Troldborg N. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry. Wind Engineering, 2005, 29(2): 89–114
CrossRef Google scholar
[138]
Bergami L. Aeroelastic Stability of a 2D Airfoil Section Equipped with a Trailing Edge Flap. 2008, Technical Report Risø-R-1663(EN). Risø National Laboratory, Roskilde, 2008
[139]
Bak C. Gaunaa1 M, Andersen P B, Buhl T, Hansen P, Clemmensen K, Møller R. Wind tunnel test on wind turbine airfoil with adaptive trailing edge geometry. In: Proceedings of the 45th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2007
[140]
Lackner M A, Kuik V G. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 2009
[141]
Chow R, van Dam C P. Computational investigations of deploying load control microtabs on a wind turbine airfoil. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012127
[142]
Mayda E A, van Dam C P, Yen-Nakafuji D T. Computational investigation of finite width microtabs for aerodynamic load control. In: Proceedings of the 43th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2005
[143]
Van Dam C P, Chow R, Zayas J R, Berg D E. Computational investigations of small deploying tabs and flaps for aerodynamic load control. In: 2nd EWEA/EAWE Special Topic Conference “The Science of making Torque from Wind”, Lyngby, DK, 2007
[144]
Zhu W X, Yu G L, Tian M F, Shen Z H. Experimental investigation on performance enhancing for wind turbine by mounting Gurney flap to the blade. Renewable Energy Resources, 2008, (2): 24–26
[145]
Shen Z H, Xia S Z, Gui Q Y, Shen H Y. A numerical study of aerodynamic characteristics of modified airfoil with gurney flap. Acta Energiae Solaris Sinica, 2007, 28(9): 988–991
[146]
Su M, Li W.Numerical simulation on lift enhancement of 2D aerofoil Gurney flaps of wind turbine. Renewable Energy Resources, 2007, (2): 60–62
[147]
Hao L, Qiao Z, Song K, Song W. Research on aerodynamic performance of wind turbine blade airfoil using microtab. Aeronautical Computing Technique, 2010, (2): 24–27
[148]
Barrett R M, Brozoski F. Adaptive flight control surfaces, wings, rotors, and active aerodynamics. In: Proceedings of SPIE. The International Society for Optical Engineering. Washington, 1996
[149]
Straub F K, Kennedy D K, Domzalski D B, Hassan A A, Ngo H, Anand V, Birchette T. Smart material-actuated rotor technology-SMART. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 249–260
CrossRef Google scholar
[150]
Gordaninejad F, Wu W. A two-dimensional shape memory alloy/elastomer actuator. International Journal of Solids and Structures, 2001, 38(19): 3393–3409
CrossRef Google scholar
[151]
Ghomshei M M, Tabandeh N, Ghazavi A, Gordaninejad F. A three-dimensional shape memory alloy/elastomer actuator. Composites. Part B, Engineering, 2001, 32(5): 441–449
CrossRef Google scholar
[152]
Chandra R. Active shape control of composite blades using shape memory actuation. Smart Materials and Structures, 2001, 10(5): 318–326
CrossRef Google scholar
[153]
Chopra I. Review of state of art of smart structures and integrated systems. AIAA Journal, 2002, 40(11): 2145–2187
CrossRef Google scholar
[154]
Kennedy D K, Straub F K, Schetky L M D, Chaudhry Z, Roznoy R. Development of an SMA actuator for in-flight rotor blade tracking. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 235–248
CrossRef Google scholar
[155]
Barlas T K, van Kuik G A M. State of the art and prospectives of smart rotor control for wind turbines. Journal of Physics: Conference Series, 2007, 75(1): Paper No. 012080
[156]
Lindroos T, Sippola M, Koskinen J. UPWIND-SMA actuated adaptive airfoil. In: 56th IEA Topical Expert Meeting. Aluquerque, USA, 2008, 167–178
[157]
Van Kuik G A M. 1B3 - Final Report: showing the potential of smart rotor blades and rotor control. 2011-<month>01</month>-<day>30</day>, http://www.upwind.eu/media/849/Upwind%20D_1B3_12%20-%20End%20report.pdf
[158]
Seidel M, Mutius M V, Steudel D. Design and load calculations for offshore foundations of a 5 MW turbine. In: Conference Proceedings DEWEK 2004. Wilhelmshaven, 2004
[159]
Seidel M, Mutius M V, Rix P, Steudel D. Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines. In: Proceedings of the Offshore Wind Conference. Copenhagen, 2005
[160]
Jonkman J M, Sclavounos P D. Development of fully coupled aeroelastic and hydrodynamic models for offshore wind turbines. In: Proceedings of the 44th Aerospace Sciences Meeting and Exhibition. Reno, USA, 2006

Acknowledgements

This work was supported by the Key Laboratory Scientific Project of Hunan Province Unversity (No. 2009NGQ004), and the Independent Innovation Funding of Huazhong University of Science and Technology (No. 2010MS115).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/