REVIEW ARTICLE

Micro/nanofluidics-enabled energy conversion and its implemented devices

  • Yang YANG , 1 ,
  • Jing LIU 1,2
Expand
  • 1. Key Laboratory of Cryogenics (Y0AS011010), Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100080, China

Received date: 08 Jun 2010

Accepted date: 30 Aug 2010

Published date: 05 Sep 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Most people were not aware of the role of energy as a basic force that drives the development and economic growth of the world until the two great oil crises occurred. According to the conservation law, energy not only exists in various forms but is also capable of being converted from one form to another. The common forms of energy are mechanical energy, chemical energy, internal energy, electrical energy, atomic energy, and electromagnetic energy, among others. The fluids in nature serve as the most common carriers and media in the energy conversion process. Following the rapid development of microelectromechanical systems (MEMS) technology, the energy supply and conversion issue in micro/nano scale has also been introduced in research laboratories worldwide. With unremitting efforts, great quantities of micro/nano scale energy devices have been investigated. Micro/nanofluid shows distinct features in transporting and converting energy similar to their counterpart macroscale tasks. In this paper, a series of micro/nanofluid-enabled energy conversion devices is reviewed based on the transformation between different forms of energy. The evaluation and contradistinction of their performances are also examined. The role of micro/nanofluid as media in micro/nano energy devices is summarized. This contributes to the establishment of a comprehensive and systematic structure in the relationship between energy conversion and fluid in the micro/nano scale. Some fundamental and practical issues are outlined, and the prospects in this challenging area are explored.

Cite this article

Yang YANG , Jing LIU . Micro/nanofluidics-enabled energy conversion and its implemented devices[J]. Frontiers in Energy, 0 , 5(3) : 270 -287 . DOI: 10.1007/s11708-010-0126-6

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 50977087) and the Tsinghua-Yue-Yuen Medical Sciences Fund.
1
Jiang Z M. Reflections on energy issues in China. Journal of Shanghai Jiaotong University, 2008, 42(3): 345–359 (in Chinese)

2
Chen H S. Japan energy supply, demand and structural changes. Contemporary Economy of Japan, 2009, 167(5): 24–28(in Chinese)

3
Dai Y D, Ren D M. Review the status and effects of renewable energy of China in term of the energy issues faced by China during the national economy development. Renewable Energy, 2005, 120(2): 4–8 (in Chinese)

4
Ye X D. Outlet of predicament: basic experience of Denmark in dealing with energy source problems and revelation. China Population Resources and Environment, 2006, 16(1): 92–95(in Chinese)

5
Zhang J Y. Development of energy in Thailand. Southeast Asian Affairs, 2009, 137(1): 12–18(in Chinese)

6
Yang Z H. Energy issue and Sino-American relations. Coal, 2006, 15(6): 16–17 (in Chinese)

7
Jiang M Y, Wang C M. Rational countermeasures to the issue of Chinese energy. Journal of Shandong University of Science and Technology (Social Sciences), 2007, 9(1): 56–61 (in Chinese)

8
Parker S P. McGraw-Hill Encyclopedia of Energy. Columbus, OH, USA: McGraw-Hill Companies, Inc, 1980

9
Li M, Dai L R. Biophysics: energy, information and life. Shanghai: Science & Technology Press of Shanghai, 2006 (in Chinese)

10
Li F Z. The World of Energy. Changchun: Jilin Publishing Group Ltd, 2009 (in Chinese)

11
Cheng L. Energy Source. Jinan: Shandong Science & Technology Press, 2008 (in Chinese)

12
Kellermayer M S Z, Smith S B, Granzier H L, Bustamante C. Folding-unfolding transitions in singletitin molecules characterized with laser tweezers. Science, 1997, 276(5315): 1112–1116

DOI

13
Fernandez J M, Chu S, Oberhauser A F. RNA structure: Pulling on hair (pins). Science, 2001, 292(5517): 653–654

DOI

14
Sato T. Micro/nano manipulation world. In: Proc IROS. 1996, 834–841

15
Jager E W H, Inganäs O, Lundström I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science, 2000, 288(5475): 2335–2338

DOI

16
Lu J H, Li H K, An H J, Wang G H, Wang Y, Li M Q, Zhang Y, Hu J. Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR. J Am Chem Soc, 2004, 126(36): 11136–11137

DOI

17
Curran S, Carroll D L, Ajayan P M, Redlich P, Roth S, Rühle M, Blau W. Picking needles from the nanotube-haystack. Adv Mater, 1998, 10(4): 311–313

DOI

18
Fu L M, Yang R J, Lin C H, Chien Y S. A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis, 2005, 5(9): 1814–1824

DOI

19
John T, Mezić I. Maximizing mixing and alignment of orientable particles for reaction enhancement. Phys Fluids, 2007, 19(12): 123602–123617

DOI

20
Khatavkar V, Anderson P D, Toonder J M J, Meijer H E H. Active micromixer based on artificial cilia. Phys Fluids, 2007, 19(8): 083605–083608

DOI

21
Tai R H. MEMS & Microsystems-Design and Manufacture. Columbus, OH, USA: McGraw-Hill Companies, Inc, 2002

22
Nowak R. A DARPA perspective on small fuel cells for the military. Solid State Energy Conversion Alliance (SECA) Workshop, Arlington, VA, 2001

23
Dyer C. Fuel cells for portable applications. Journal of Power Sources, 2002, 106(1,2): 31–34

24
Hoogers G. Fuel Cell Technology Handbook. Boca Raton: CRC Press, 2002

25
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367

DOI

26
Dhar S K, Ovshinsky S R, Gifford P R, Corrigan D A, Fetcenko M A, Venkatesan S. Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date. Journal of Power Sources, 1997, 65(1,2): 1–7

27
Maynard H L, Meyers J P. Miniature fuel cells for portable power: design considerations and challenges. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002, 20(4): 1287–1297

DOI

28
Service R F. Shrinking fuel cells promise power in your pocket. Science, 2002, 296(5571): 1222–1224

DOI

29
Larminie J, Dicks A. Fuel Cell Systems Explained. 2nd ed. Chichester: John Wiley & Sons Ltd, 2003

30
Kelley S C, Deluga G A, Smyrl W H. Miniature fuel cells fabricated on silicon substrates. J Am Inst Chem Eng, 2002, 48(5): 1071–1082

31
Narayanan S R, Valdez T I, Clara F. Development of a miniature fuel cell for portable applications. In: Proceedings of the 199th Meeting on Direct Methanol Fuel Cell. Washington, DC, USA, 2001, 254–263

32
Chang H, Kim J R, Cho J H, Kim H K, Choi K H. Materials and processes for small fuel cells. Solid State Ionics, 2002, 148(3): 601–606

DOI

33
Bostaph J, Koripella R, Fisher A, Zindel D, Hallmark J, Neutzler J, Bai L. Microfluidic fuel delivery system for 100 mW DMFC. In: Proceedings of the 199th Meeting on Direct Methanol Fuel Cell. Washington, DC, USA, 2001, 274–285

34
Lu G Q, Wang C Y, Yen T J, Zhang X. Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochim Acta, 2004, 49(5): 821–828

DOI

35
Yao S C, Tang X, Hsieh C C, Alyousef Y, Vladimer M, Fedder G K, Amon C H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy, 2006, 31(5): 636–649

DOI

36
Yen T J, Fang N, Zhang X, Lu G Q, Wang C Y. A micro methanol fuel cell operating at near room temperature. Applied Physics Letters, 2003, 83(19): 4056–4068

DOI

37
Phirani J, Basu S. Analyses of fuel utilization in microfluidic fuel cell. Journal of Power Sources, 2008, 175(1–3): 261–265

DOI

38
Hoogers G. Fuel Cell Technology Handbook. Boca Raton: CRC Press, 2002

39
Appleby A, Foulkes F. Fuel Cell Handbook. New York: Van Nostrand Reinhold, 1989

40
Narayanan S R, Valdez T I. Portable direct methanol fuel cell systems. In: Vielstich W, Lamm A, Gasteiger H A, eds. Handbook of Fuel Cells–Fundamentals, Technology and Application, Hoboken, NJ: Wiley, 2003, 1133

41
Bailey C. Advances in R&D for the commercialization of small fuel cells and battery technologies for use in portable applications. In: Proceedings of the Conference on Advances in R&D for the Commercialization of Small Fuel Cells and Battery Technologies for Use in Portable Application. Bethesda, MD, 1999

42
Choi J W, Sung W. A planar and membraneless microscale fuel cell using nickel and silver as catalysts. In: Technical Digest of the 13th International Conference on Solid-State Sensors, Actuators, and Microsystems. 2005, 1852–1855

43
Dyer C K. A novel thin-film electrochemical device for energy conversion. Nature, 1990, 343(6253): 547–548

DOI

44
Shah K, Shin W C, Besser R S. A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques. Sensors and Actuators B, 2004, 97(2,3): 157–167

45
Park B Y, Madou M J. Miniature PEM fuel cell with pyrolyzed carbon microfluidic plates. The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, USA, 2006

46
Mitrovski S M, Elliott L C C, Nuzzo R G. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2–O2 fuel cell. Langmuir, 2004, 20(17): 6974–6976

DOI

47
Mitrovski S M, Nuzzo R G. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance. Lab on a Chip, 2006, 6(3): 353–361

DOI

48
Zhu L, Lin K Y, Morgan R D, Swaminathan V V, Kim H S, Gurau B, Kim D, Bae B, Masel R I, Shannon M A. Integrated micro-power source based on a micro-silicon fuel cell and a micro electromechanical system hydrogen generator. Journal of Power Sources, 2008, 185(2): 1305–1310

DOI

49
Mench M M, Wang Z H, Bhatia K, Wang C Y. Design of a micro direct methanol fuel cell (μDMFC). In: Proceedings of the IMECE’01, International Mechanical Engineering Congress and Exposition (IMECE). New York, USA, 2001

50
Yao S C, Tang X D, Hsieh C C, Alyousef Y, Vladimer M, Fedder G K, Amon C H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy, 2006, 31(5): 636–649

DOI

51
Torres N, Santander J, Esquivel J P, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C. Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors and Actuators B, 2008, 132(2): 540–544

DOI

52
Esquivel J P, Sabaté N, Santander J, Torres N, Cané C. Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsyst Technol, 2008, 14(4): 535–541

DOI

53
Kamitani A, Morishita S, Kotaki H, Arscott S. Fuel supply optimization in micro fuel cells. Procedia Chemistry, 2009, 1(1): 457–460

DOI

54
Kamitani A, Morishita S, Kotaki H, Arscott S. Improved fuel use efficiency in microchannel direct methanol fuel cells using a hydrophilic macroporous layer. Journal of Power Sources, 2009, 187(1): 148–155

DOI

55
Kamitani A, Morishita S, Kotaki H, Arscott S. Microfabricated microfluidic fuel cells. Sensors and Actuators B: Chemical, 2009in Press)

DOI

56
Shen M, Walter S, Gijs M A M. Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip. Journal of Power Sources, 2009, 193(2): 761–765

DOI

57
Wilson M S. Methanol decomposition fuel processor for portable power applications. International Journal of Hydrogen Energy, 2009, 34(7): 2955–2964

DOI

58
Song Y A, Batist C, Sarpeshkar R, Han J. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin. Journal of Power Sources, 2008, 183(2): 674–677

DOI

59
Wadsworth C J, Yanagisawa N, Dutta D. Nanochannel arrays as supports for proton exchange membranes in microfluidic fuel cells. Journal of Power Sources, 2010, 195(11): 3636–3639

DOI

60
Ferrigno R, Stroock A D, Clark T D, Mayer M, Whitesides G M. Membraneless vanadium redox fuel cell using laminar flow. Journal of the American Chemical Society, 2002, 124(44): 12930–12931

DOI

61
Kjeang E, Michel R, Harrington D A, Sinton D, Djilali N. An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. Electrochimica Acta, 2008, 54(2): 698–705

DOI

62
Kjeang E, Proctor B T, Brolo A G, Harrington D A, Djilali N, Sinton D. High-performance microfluidic vanadium redox fuel cell. Electrochimica Acta, 2007, 52(15): 4942–4946

DOI

63
Kjeang E, McKechnie J, Sinton D, Djilali N. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. Journal of Power Sources, 2007, 168(2): 379–390

DOI

64
Kjeang E, Michel R, Harrington D A, Djilali N, Sinton D. A Microfluidic fuel cell with flow-through porous electrodes. Journal of the American Chemical Society, 2008, 130(12): 4000–4006

DOI

65
Sung W, J W Choi. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. Journal of Power Sources, 2007, 172(1): 198–208

DOI

66
Choban E R, Markoski L J, Wieckowski A, Kenis P J A. Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004, 128(1): 54–60

DOI

67
Jayashree R S, Gancs L, Choban E R, Primak A, Natarajan D, Markoski L J, Kenis P J A. Air-breathing laminar flow-based microfluidic fuel cell. Journal of the American Chemical Society, 2005, 127(48): 16758–16759

DOI

68
Sun M H, Casquillas G V, Guo S S, Shi J, Ji H, Ouyang Q, Chen Y. Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering, 2007, 84(5–8): 1182–1185

DOI

69
Salloum K S, Hayes J R, Friesen C A, Posner J D. Sequential flow membraneless microfluidic fuel cell with porous electrodes. Journal of Power Sources, 2008, 180(1): 243–252

DOI

70
Katz E, Filanovsky B, Willner I. A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New Journal of Chemistry, 1999, 23: 481–487

DOI

71
Togo M, Takamura A, Asai T, Kaji H, Nishizawa M. Structural studies of enzyme-based microfluidic biofuel cells. Journal of Power Sources, 2008, 178(1): 53–58

DOI

72
Chau L H, Ip J S C, Leung K C F, Li W J, Wong K W. Development of a bio-energy generation system based on microfluidic platform. In: 2008 International Conference on Information and Automation (ICIA 2008). Changsha, China, 2008, 1379–1382

DOI

73
Zebda A, Renaud L, Cretin M, Pichot F, Innocent C, Ferrigno R, Tingry S. A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature. Electrochemistry Communications, 2009, 11(3): 592–595

DOI

74
Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S. Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. Journal of Power Sources, 2009, 193(2): 602–606

DOI

75
Moore C M, Minteer S D, Martin R S. Microchip-based ethanol/oxygen biofuel cell. Lab on a Chip, 2005, 5(2): 218–225

DOI

76
Cardenas-Valencia A M, Challa V R, Fries D, Langebrake L, Benson R F, Bhansali S. A micro-fluidic galvanic cell as an on-chip power source. Sensors and Actuators B, 2003, 95(1–3): 406–413

DOI

77
Lyklema J. Fundamentals of Interface and Colloid Science. New York: Academic, 1995

78
Yang J, Lu F Z, Kostiuk L W, Kwok D Y. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering, 2003, 13(6): 963–970

DOI

79
Daiguji H, Yang P, Szeri A J, A Majumdar. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett, 2004, 4(12): 2315–2321

DOI

80
Lu M C, Satyanarayana S, Karnik R, Majumdar A, Wang C C. A mechanical-electrokinetic battery using a nano-porous membrane. Journal of Micromechanics and Microengineering, 2006, 16(4): 667–675

DOI

81
Osterle J F. Electrokinetic energy conversion. Journal of Applied Mechanics, 1964, 31(1): 161–164

82
Burgreen D, Nakache F R. Efficiency of pumping and power generation in ultrafine electrokinetic systems. Journal of Applied Mechanics, 1965, 32(3): 675–679

83
Morrison F A, Osterle J F. Electrokinetic energy conversion in ultrafine capillaries. Journal of Chemical Physics, 1965, 43(6): 2111–2115

DOI

84
Khair A S, Squires T M. Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. Journal of Fluid Mechanics, 2008, 615: 323–334

DOI

85
Joly L, Ybert C, Trizac E, Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces. Physical Review Letters, 2004, 93(25): 257805

DOI

86
Ren C L, Li D Q. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Analytica Chimica Acta, 2005, 531(1): 15–23

DOI

87
Heyden F H J, Bonthuis D J, Stein D, Meyer C, Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters, 2006, 6(10): 2232–2237

DOI

88
Chang C C, Yang R J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluidics and Nanofluidics, 2010, 9(2–3): 225–241

89
Ren Y Q, Stein D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology, 2008, 19 (19) : 195707-1–195707-6

DOI

90
Chun M S, Shim M S, Choi N W. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Lab on a Chip, 2006, 6(2): 302–309

DOI

91
Heyden F H J, Bonthuis D J, Stein D, Meyer C, Dekker C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters, 2007, 7(4): 1022–1025

DOI

92
Borno R T, Steinmeyer J D, Maharbiz M M. Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Applied Physics Letters, 2009, 95(1): 013705-1–013705-3

DOI

93
Namasivayam V, Larson R G, Burke D T, Burns M A. Transpiration-based micropump for delivering continuous ultra-low flow rates. Journal of Micromechanics and Microengineering, 2003, 13(2): 261–271

DOI

94
Goedecke N, Eijkel J, Manz A. Evaporation driven pumping for chromatography application. Lab on a Chip, 2002, 2(4): 219–223

DOI

95
Wheeler T D, Stroock A D. Transpiration at negative pressures in a synthetic tree. Nature (London), 2008, 455(7210): 208–212

DOI

96
Herrault F, Ji C H, Kim S H, Wu X S, Allen M G, A microfluidic-electric package for power mems generators. In: MEMS 2008. Tucson, AZ, USA, 2008, 112–115

97
Wang X D, Liu J, Song J H, Wang Z L. Integrated nanogenerators in biofluid. Nano Letters, 2007, 7(8): 2475–2479

DOI

98
Hunter R J. Zeta Potential in Colloid Science, Principles and Applications. New York: Academic Press, 1981

99
Piyasena M E, Lopez G P, Petsev D N. An electrokinetic cell model for analysis and optimization of electroosmotic microfluidic pumps. Sensors and Actuators B: Chemical, 2006, 113(1): 461–467

DOI

100
Paul P H, Arnold D W, Rakestraw D J. Electrokinetic generation of high pressures using porous microstructures. In: Proceedings of the-MicroTAS’ 98. Banff, Canada, 1998, 49–52

101
Paul P H, Arnold D W, Neyer D W, Smith K B. Electrokinetic pump application in micro-total analysis systems; mechanical actuation to HPLC. In: Proceedings of the-MicroTAS’ 00. Enschede, The Netherlands, 2000, 583–590

102
Chen L X, Wang H L, Ma J P, Wang C X, Guan Y F. Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sensors and Actuators B, 2005, 104(1): 117–123

DOI

103
Ateya D A, Shah A A, Hua S Z. An electrolytically actuated micropump. Review of Scientific Instruments, 2004, 75(4): 915–920

DOI

104
Koeneman P B, Busch-Vishniac I J, Wood K L. Feasibility of micro power supplies for MEMS. Journal of Microelectromechanical Systems, 1997, 6(4): 355–362

DOI

105
Arana L R, Schaevitz S B, Franz A J, Jensen K F, Schmidt M A. A microfabricated suspended-tube chemical reactor for fuel processing. In: proceedings, IEEE micro electro mechanical systems. IEEE international conference on micro electro mechanical systems No15, Las Vegas NV, ETATS-UNIS, 2002, 232–235

106
Cao H L, Xu J L. Thermal performance of a micro-combustor for micro-gas turbine system. Energy Conversion and Management, 2007, 48(5): 1569–1578

DOI

107
Kumar S, Maruta K, Minaev S. Experimental investigations on the combustion behavior of methane–air mixtures in a micro-scale radial combustor configuration. Journal of Microelectromechanical Systems, 2007, 17(15): 900–908

108
Pattekar A V, Kothare M V. A microreactor for hydrogen production in micro fuel cell applications. Journal of Microelectromechanical Systems, 2004, 13(1): 7–18

DOI

109
Lee D H, Kwon S. Heat transfer and quenching analysis of combustion in a micro combustion vessel. Journal of Microelectromechanical Systems, 2002, 12(5): 670–676

110
Spadaccini C M, Lee J, Lukachko S, Waitz I A, Mehra A, Zhang X. High power density silicon combustion systems for micro gas turbine engines. In: Proceedings of ASME TURBO EXPO 2002 Amsterdam, The Netherlands, 2002

111
Spadaccini C M, Zhang X, Cadouc C P, Mikia N, Waitz I A. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sensors and Actuators A, 2003, 103(1,2): 219–224

112
Shan X C, Wang Z F, Wu M, Hua J. Studies on a micro combustor for gas turbine engines. Journal of Micromechanics and Microengineering, 2008, 15(9): 17–22

113
Yang W M, Chou S K, Shu C, Li Z W, Xue H. Combustion in micro-cylindrical combustors with and without a backward facing step. Applied Thermal Engineering, 2002, 22(16): 1777–1787

DOI

114
Loverich J J, Kanno I, Kotera H. Concepts for a new class of all-polymer micropumps. Lab on a Chip, 2006, 6: 1147–1154

DOI

115
Good B T, Bowman C N, Davis R H. A water-activated pump for portable microfluidic applications. Journal of Colloid and Interface Science, 2007, 305(2): 239–249

DOI

116
Farahi R H, Passian A, Zahrai S, Lereu A L, Ferrell T L, Thundat T. Microscale marangoni actuation: all-optical and all-electrical methods. Ultramicroscopy, 2006, 106(8,9): 815–821

117
Oroszi L, Dér A, Kirei H, Ormos P, Rakovics V. Control of electro-osmostic flow by light. Applied Physics Letters, 2006, 89(26): 263508-1–263508-3

DOI

118
Satoh W, Hosono H, Suzuki H. On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Analytical Chemistry, 2005, 77(21): 6857–6863

DOI

119
Sim W, Oh J, Choi B. Fabrication, experiment of a microactuator using magnetic fluid for micropump application. Microsystem Technologies, 2006, 12(12): 1085–1091

DOI

120
Yun K S, Cho I J, Bu J U, Kim C J, Yoon E. A surface-tension driven micropump for low-voltage and low-power operations. Journal of Microelectromechanical Systems, 2002, 11(5): 454–461

DOI

121
Jung J Y, Kwak H Y. Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluid Nanofluid, 2007, 3(2): 161–169

DOI

122
Tsai J H, Lin L. A thermal-bubble-actuated micronozzlediffuser pump. Journal of Microelectromechanical Systems, 2002, 11(6): 665–671

DOI

123
Gui L, Liu J. Feasibility study on a freeze-thaw phase change peristaltic pump. In: Annual Heat and Mass Transfer Conference of the Chinese Society of Engineering Thermophysics. Jilin, China, 2004, No. 043028 (in Chinese)

124
Pal R, Burns M A. Self-contained actuation of phase-change pistons in microchannels. Journal of Micromechanics and Microengineering, 2006, 16(4): 786–793

DOI

125
Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003, 26(11): 1131–1144

DOI

126
Kulah H, Najafi K. An electromagnetic micro power generator for low-frequency environmental vibrations. 2005-<month>04</month>-<day>11</day>. http://papers.sae.org/2005-01-1896

127
Sari I, Balkan T, Kulah H. A wideband electromagnetic micro power generator for wireless microsystems. In: International Conference on Solid-State Sensors, Actuators, and Microsystems. Lyon, France, 2007, 275–278

DOI

128
Herrault F, Ji C H, Shafer R H, Kim S HAllen M G. Ultraminiaturized milliwatt-scale permanent magnet generators. In: International Conference on Solid-State Sensors, Actuators, and Microsystems. Lyon, France, 2007, 899–902

DOI

129
Kim S H, Ji C H, Galle P, Herrault F, Wu X S, Lee J H, Choi C A, Allen M G. An electromagnetic energy scavenger from direct airflow. In: Proceedings of Power MEMS 2008+. Sendai, Japan, 2008

Outlines

/