Recent advances in cathode electrocatalysts for PEM fuel cells
Received date: 01 Mar 2011
Accepted date: 28 Mar 2011
Published date: 05 Jun 2011
Copyright
Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.
Junliang ZHANG . Recent advances in cathode electrocatalysts for PEM fuel cells[J]. Frontiers in Energy, 2011 , 5(2) : 137 -148 . DOI: 10.1007/s11708-011-0153-y
1 |
Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002, 47(22–23): 3571–3594
|
2 |
Gasteiger H A, Markovic N M, Ross P N. H2 and CO Electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62°C. Journal of Physical Chemistry, 1995, 99(45): 16757–16767
|
3 |
Mukerjee S, McBreen J. Hydrogen electrocatalysis by carbon supported Pt and Pt alloys. Journal of the Electrochemical Society, 1996, 143(7): 2285–2294
|
4 |
Neyerlin K C, Gu W B, Jorne J, Gasteiger H A. Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 2007, 154(7): B631–B635
|
5 |
Tarasevich M R, Sadkowski A, Yeager E. Oxygen Electrochemistry. In: Conway B E, Bockris J O, Yeager E, Khan S U M, White R E. Eds. Comprehensive Treatise in Electrochemistry, New York: Plenum Press, 1983, 301
|
6 |
Adzic R R. Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross P N, eds. Electrocatalysis, New York: Wiley-VCH, 1998, 197
|
7 |
Kinoshita K. Electrochemical Oxygen Technology. New York: Wiley, 1992
|
8 |
Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: Rotating ring-Pt(hkl) disk studies. Journal of Physical Chemistry, 1995, 99(11): 3411–3415
|
9 |
Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on catalyst loading. Journal of Power Sources, 2004, 127(1–2): 162–171
|
10 |
Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochimica Acta, 1967, 12(6): 615–628
|
11 |
Wang J X, Markovic N M, Adzic R R. Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. Journal of Physical Chemistry B, 2004, 108(13): 4127–4133
|
12 |
Markovic N M, Gasteiger H A, Grgur B N, Ross P N. Oxygen reduction reaction on Pt(111): Effects of bromide. Journal of Electroanalytical Chemistry, 1999, 467(1): 157–163
|
13 |
Adzic R R. Surface morphology effects in oxygen electrochemistry. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 419
|
14 |
Uribe F A, Wilson M S, Springer T E, Gottesfeld S. Oxygen reduction (ORR) at the Pt/recast ionomer interface and some general comments on the ORR at Pt/aqueous electrolyte interfaces. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 494
|
15 |
Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
|
16 |
Wang J X, Zhang J L, Adzic R R. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. Journal of Physical Chemistry A, 2007, 111(49): 12702–12710
|
17 |
Wang J X, Uribe F A, Springer T E, Zhang J L, Adzic R R. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: The double Tafel slope and fuel cell applications. Faraday Discussions, 2008, 140: 347–362
|
18 |
Blurton K F, Greenberg P, Oswin H G, Rutt D R. The electrochemical activity of dispersed platinum. Journal of The Electrochemical Society, 1972, 119(5): 559
|
19 |
Peuckert M, Yoneda T, Betta R A D, Boudart M. Oxygen reduction on small supported platinum particles. Journal of the Electrochemical Society, 1986, 133(5): 944
|
20 |
Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. Journal of the Electrochemical Society, 1990, 137(3): 845
|
21 |
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56(1–2): 9–35
|
22 |
Landsman D A, Luczak F J. Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 811
|
23 |
Thompsett D. Pt alloys as oxygen reduction catalysts. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 467
|
24 |
Hammer B, Norskov J K. Theoretical surface science and catalysis–Calculations and concepts. In: Gates B C, Knozinger H, eds. Advances in Catalysis, San Diego: Academic Press Inc, 2000, 45: 71
|
25 |
Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on gold surfaces: Effect of steps and strain. Journal of Physical Chemistry B, 2003, 107(35): 9298–9307
|
26 |
Greeley J, Rossmeisl J, Hellman A, Norskov J K.Theoretical trends in particle size effect for the oxygen reduction reaction. Z Phys Chemie-Int J Res Phys Chem Chem Phys, 2007, 221(9,10): 1209–1220
|
27 |
Mukerjee S, McBreen J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation1. Journal of Electroanalytical Chemistry, 1998, 448(2): 163–171
|
28 |
Mukerjee S, Srinivasan S, Soriaga M P, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. Journal of the Electrochemical Society, 1995, 142(5): 1409
|
29 |
Wakabayashi N, Takeichi M, Uchida H, Watanabe M. Temperature dependence of oxygen reduction activity at Pt Fe, Pt Co, and Pt Ni alloy electrodes. Journal of Physical Chemistry B, 2005, 109(12): 5836–5841
|
30 |
Paulus U A, Wokaun A, Scherer G G, Schmidt T J, Stamenkovic V, Markovic N M, Ross P N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 2002, 47(22,23): 3787–3798
|
31 |
Koh S, Hahn N, Yu C F, Strasser P. Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2008, 155(12): B1281–B1288
|
32 |
Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer G G. Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. Journal of Physical Chemistry C, 2009, 113(10): 4069–4077
|
33 |
Gottesfeld S. The ellipsometric characterization of Pt+Cr alloy surfaces in acid solutions. Journal of Electroanalytical Chemistry, 1986, 205(1,2): 163–184
|
34 |
Paffett M T, Beery J G, Gottesfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. Journal of the Electrochemical Society, 1988, 135(6): 1431
|
35 |
Jalan V, Taylor E J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. Journal of the Electrochemical Society, 1983, 130(11): 2299–2302
|
36 |
Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry, 1993, 357(1–2): 201–224
|
37 |
Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. Journal of Electroanalytical Chemistry, 1999, 460(1,2): 258–262
|
38 |
Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247
|
39 |
Mun B S, Watanabe M, Rossi M, Stamenkovic V, Markovic N M, Ross P N Jr. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. Journal of Chemical Physics, 2005, 123(20): 204717
|
40 |
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K.Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556
|
41 |
Uribe F A, Zawodzinski T A.A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochimica Acta, 2002, 47(22, 23): 3799–3806
|
42 |
Glass J T, Cahen J G L, Stoner G E, Taylor E J. The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. Journal of the Electrochemical Society, 1987, 134(1): 58–65
|
43 |
Chen S, Ferreira P J, Sheng W C, Yabuuchi N, Allard L F, Shao-Horn Y.Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. Journal of the American Chemical Society, 2008, 130(42): 13818–13819
|
44 |
Stamenkovic V, Schmidt T J, Ross P N, Markovic N M.Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. Journal of Physical Chemistry B, 2002, 106(46): 11970–11979
|
45 |
Xu Y, Ruban A V, Mavrikakis M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. Journal of the American Chemical Society, 2004, 126(14): 4717–4725
|
46 |
Chen S, Sheng W C, Yabuuchi N, Ferreira P J, Allard L F, Shao-Horn Y. Origin of oxygen reduction reaction activity on “Pt3Co” Nanoparticles: Atomically resolved chemical compositions and structures. Journal of Physical Chemistry C, 2009, 113(3): 1109–1125
|
47 |
Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Journal of the American Chemical Society, 2006, 128(27): 8813–8819
|
48 |
Koh S, Leisch J, Toney M F, Strasser P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. Journal of Physical Chemistry C, 2007, 111(9): 3744–3752
|
49 |
Neyerlin K C, Srivastava R, Yu C F, Strasser P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). Journal of Power Sources, 2009, 186(2): 261–267
|
50 |
Wang C, van Der Vliet D, Chang K C, You H, Strmcnik D, Schlueter J A, Markovic N M, Stamenkovic V R. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: Size-dependent activity. Journal of Physical Chemistry C, 2009, 113(45): 19365–19368
|
51 |
Colon-Mercado H R, Popov B N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 2006, 155(2): 253–263
|
52 |
Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. Journal of the American Chemical Society, 2007, 129(42): 12624–12625
|
53 |
Brankovic S R, Wang J X, Adzic R R. Pt submonolayers on Ru nanoparticles: A novel low Pt loading, nigh CO tolerance fuel cell electrocatalyst. Electrochemical and Solid-State Letters, 2001, 4(12): A217
|
54 |
Sasaki K, Mo Y, Wang J X, Balasubramanian M, Uribe F, McBreen J, Adzic R R. Pt submonolayers on metal nanoparticles–Novel electrocatalysts for H2 oxidation and O2 reduction. Electrochimica Acta, 2003, 48(25–26): 3841–3849
|
55 |
Wang J X, Brankovic S R, Zhu Y, Hanson J C, Adzic R R. Kinetic characterization of PtRu fuel cell anode calalysts made by spontaneous Pt deposition on Ru nanoparticles. Journal of the Electrochemical Society, 2003, 150(8): A1108–A1117
|
56 |
Brankovic S R, McBreen J, Adzic R R.Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 2001, 503(1–2): 99–104
|
57 |
Sasaki K, Wang J X, Balasubramanian M, McBreen J, Uribe F, Adzic R R.Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability.βElectrochim. Acta, 2004, 49(22,23): 3873–3877
|
58 |
Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. Journal of Electroanalytical Chemistry, 1974, 54(1): 25–38
|
59 |
Herrero E, Buller L J, Abruña H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chemical Reviews, 2001, 101(7): 1897–1930
|
60 |
Aramata A.Underpotential deposition on single-crystal metals. In: Bockris J O, White R E , Conway B E, eds. Modern Aspects of Electrochemistry. New York: Plenum Publishing, 1997, 31: 70
|
61 |
Brankovic S R, Wang J X, Adzic R R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 2001, 474(1–3): L173–L179
|
62 |
Zhang J, Mo Y, Vukmirovic M B, Klie R, Sasaki K, Adzic R R. Platinum monolayer electrocatalysts for O 2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B, 2004, 108(30): 10955–10964
|
63 |
Adzic R R, Zhang J, Sasaki K, Vukmirovic M B, Shao M, Wang J X, Nilekar A U, Mavrikakis M, Valerio J A, Uribe F. Platinum monolayer fuel cell electrocatalysts. Topics in Catalysis, 2007, 46(3–4): 249–262
|
64 |
Zhang J, Vukmirovic M B, Sasaki K, Uribe F, Adzic R R. Platinum monolayer electrocatalysts for oxygen reduction: Effect of substrates, and long-term stability. J Serb Chem Soc, 2005, 70(3): 513–525
|
65 |
Zhang J L, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie——International Edition, 2005, 44(14): 2132–2135
|
66 |
Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Mavrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. Journal of the American Chemical Society, 2005, 127(36): 12480–12481
|
67 |
Zhou W P, Yang X F, Vukmirovic M B, Koel B E, Jiao J, Peng G W, Mavrikakis M, Adzic R R. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. Journal of the American Chemical Society, 2009, 131(35): 12755–12762
|
68 |
Zhang J, Lima F H B, Shao M H, Sasaki K, Wang J X, Hanson J, Adzic R R. Platinum monolayer on nonnoble metal noble metal core shell nanoparticle electrocatalysts for O2 reduction. Journal of Physical Chemistry B, 2005, 109(48): 22701–22704
|
69 |
Zhang J, Sasaki K, Sutter E, Adzic R R.Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222
|
70 |
Wang J X, Inada H, Wu L J, Zhu Y M, Choi Y M, Liu P, Zhou W P, Adzic R R. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Journal of the American Chemical Society, 2009, 131(47): 17298–17302
|
71 |
Sasaki K, Naohara H, Cai Y, Choi Y M, Liu P, Vukmirovic M B,Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angewandte Chemie–International Edition, 2010, 49(46): 8602–8607
|
72 |
Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Marković N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315(5811): 493–497
|
73 |
Wu J, Zhang J, Peng Z,Yang S, Wagner F T, Yang H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. Journal of the American Chemical Society, 2010, 132(14): 4984–4985
|
74 |
Zhang J, Yang H, Fang J, Zou S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Letters, 2010, 10(2): 638–644
|
/
〈 | 〉 |