FEATURE ARTICLE

Recent advances in cathode electrocatalysts for PEM fuel cells

  • Junliang ZHANG
Expand
  • Electrochemical Energy Research Laboratory, General Motors Global R&D, Honeoye Falls, NY 14472, USA

Received date: 01 Mar 2011

Accepted date: 28 Mar 2011

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

Cite this article

Junliang ZHANG . Recent advances in cathode electrocatalysts for PEM fuel cells[J]. Frontiers in Energy, 2011 , 5(2) : 137 -148 . DOI: 10.1007/s11708-011-0153-y

Acknowledgments

The author is grateful to Dr. Frederick T. Wagner for his helpful discussions.
1
Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002, 47(22–23): 3571–3594

DOI

2
Gasteiger H A, Markovic N M, Ross P N. H2 and CO Electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62°C. Journal of Physical Chemistry, 1995, 99(45): 16757–16767

DOI

3
Mukerjee S, McBreen J. Hydrogen electrocatalysis by carbon supported Pt and Pt alloys. Journal of the Electrochemical Society, 1996, 143(7): 2285–2294

DOI

4
Neyerlin K C, Gu W B, Jorne J, Gasteiger H A. Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 2007, 154(7): B631–B635

DOI

5
Tarasevich M R, Sadkowski A, Yeager E. Oxygen Electrochemistry. In: Conway B E, Bockris J O, Yeager E, Khan S U M, White R E. Eds. Comprehensive Treatise in Electrochemistry, New York: Plenum Press, 1983, 301

6
Adzic R R. Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross P N, eds. Electrocatalysis, New York: Wiley-VCH, 1998, 197

7
Kinoshita K. Electrochemical Oxygen Technology. New York: Wiley, 1992

8
Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: Rotating ring-Pt(hkl) disk studies. Journal of Physical Chemistry, 1995, 99(11): 3411–3415

DOI

9
Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on catalyst loading. Journal of Power Sources, 2004, 127(1–2): 162–171

DOI

10
Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochimica Acta, 1967, 12(6): 615–628

DOI

11
Wang J X, Markovic N M, Adzic R R. Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. Journal of Physical Chemistry B, 2004, 108(13): 4127–4133

DOI

12
Markovic N M, Gasteiger H A, Grgur B N, Ross P N. Oxygen reduction reaction on Pt(111): Effects of bromide. Journal of Electroanalytical Chemistry, 1999, 467(1): 157–163

DOI

13
Adzic R R. Surface morphology effects in oxygen electrochemistry. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 419

14
Uribe F A, Wilson M S, Springer T E, Gottesfeld S. Oxygen reduction (ORR) at the Pt/recast ionomer interface and some general comments on the ORR at Pt/aqueous electrolyte interfaces. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 494

15
Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

DOI

16
Wang J X, Zhang J L, Adzic R R. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. Journal of Physical Chemistry A, 2007, 111(49): 12702–12710

DOI

17
Wang J X, Uribe F A, Springer T E, Zhang J L, Adzic R R. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: The double Tafel slope and fuel cell applications. Faraday Discussions, 2008, 140: 347–362

DOI PMID

18
Blurton K F, Greenberg P, Oswin H G, Rutt D R. The electrochemical activity of dispersed platinum. Journal of The Electrochemical Society, 1972, 119(5): 559

DOI

19
Peuckert M, Yoneda T, Betta R A D, Boudart M. Oxygen reduction on small supported platinum particles. Journal of the Electrochemical Society, 1986, 133(5): 944

DOI

20
Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. Journal of the Electrochemical Society, 1990, 137(3): 845

DOI

21
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56(1–2): 9–35

DOI

22
Landsman D A, Luczak F J. Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 811

23
Thompsett D. Pt alloys as oxygen reduction catalysts. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 467

24
Hammer B, Norskov J K. Theoretical surface science and catalysis–Calculations and concepts. In: Gates B C, Knozinger H, eds. Advances in Catalysis, San Diego: Academic Press Inc, 2000, 45: 71

25
Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on gold surfaces: Effect of steps and strain. Journal of Physical Chemistry B, 2003, 107(35): 9298–9307

DOI

26
Greeley J, Rossmeisl J, Hellman A, Norskov J K.Theoretical trends in particle size effect for the oxygen reduction reaction. Z Phys Chemie-Int J Res Phys Chem Chem Phys, 2007, 221(9,10): 1209–1220

27
Mukerjee S, McBreen J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation1. Journal of Electroanalytical Chemistry, 1998, 448(2): 163–171

DOI

28
Mukerjee S, Srinivasan S, Soriaga M P, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. Journal of the Electrochemical Society, 1995, 142(5): 1409

DOI

29
Wakabayashi N, Takeichi M, Uchida H, Watanabe M. Temperature dependence of oxygen reduction activity at Pt Fe, Pt Co, and Pt Ni alloy electrodes. Journal of Physical Chemistry B, 2005, 109(12): 5836–5841

DOI

30
Paulus U A, Wokaun A, Scherer G G, Schmidt T J, Stamenkovic V, Markovic N M, Ross P N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 2002, 47(22,23): 3787–3798

DOI

31
Koh S, Hahn N, Yu C F, Strasser P. Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2008, 155(12): B1281–B1288

DOI

32
Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer G G. Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. Journal of Physical Chemistry C, 2009, 113(10): 4069–4077

DOI

33
Gottesfeld S. The ellipsometric characterization of Pt+Cr alloy surfaces in acid solutions. Journal of Electroanalytical Chemistry, 1986, 205(1,2): 163–184

DOI

34
Paffett M T, Beery J G, Gottesfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. Journal of the Electrochemical Society, 1988, 135(6): 1431

DOI

35
Jalan V, Taylor E J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. Journal of the Electrochemical Society, 1983, 130(11): 2299–2302

DOI

36
Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry, 1993, 357(1–2): 201–224

DOI

37
Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. Journal of Electroanalytical Chemistry, 1999, 460(1,2): 258–262

DOI

38
Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247

DOI PMID

39
Mun B S, Watanabe M, Rossi M, Stamenkovic V, Markovic N M, Ross P N Jr. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. Journal of Chemical Physics, 2005, 123(20): 204717

DOI PMID

40
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K.Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556

DOI PMID

41
Uribe F A, Zawodzinski T A.A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochimica Acta, 2002, 47(22, 23): 3799–3806

DOI

42
Glass J T, Cahen J G L, Stoner G E, Taylor E J. The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. Journal of the Electrochemical Society, 1987, 134(1): 58–65

DOI

43
Chen S, Ferreira P J, Sheng W C, Yabuuchi N, Allard L F, Shao-Horn Y.Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. Journal of the American Chemical Society, 2008, 130(42): 13818–13819

DOI PMID

44
Stamenkovic V, Schmidt T J, Ross P N, Markovic N M.Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. Journal of Physical Chemistry B, 2002, 106(46): 11970–11979

DOI

45
Xu Y, Ruban A V, Mavrikakis M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. Journal of the American Chemical Society, 2004, 126(14): 4717–4725

DOI PMID

46
Chen S, Sheng W C, Yabuuchi N, Ferreira P J, Allard L F, Shao-Horn Y. Origin of oxygen reduction reaction activity on “Pt3Co” Nanoparticles: Atomically resolved chemical compositions and structures. Journal of Physical Chemistry C, 2009, 113(3): 1109–1125

DOI

47
Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Journal of the American Chemical Society, 2006, 128(27): 8813–8819

DOI PMID

48
Koh S, Leisch J, Toney M F, Strasser P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. Journal of Physical Chemistry C, 2007, 111(9): 3744–3752

DOI

49
Neyerlin K C, Srivastava R, Yu C F, Strasser P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). Journal of Power Sources, 2009, 186(2): 261–267

DOI

50
Wang C, van Der Vliet D, Chang K C, You H, Strmcnik D, Schlueter J A, Markovic N M, Stamenkovic V R. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: Size-dependent activity. Journal of Physical Chemistry C, 2009, 113(45): 19365–19368

DOI

51
Colon-Mercado H R, Popov B N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 2006, 155(2): 253–263

52
Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. Journal of the American Chemical Society, 2007, 129(42): 12624–12625

DOI PMID

53
Brankovic S R, Wang J X, Adzic R R. Pt submonolayers on Ru nanoparticles: A novel low Pt loading, nigh CO tolerance fuel cell electrocatalyst. Electrochemical and Solid-State Letters, 2001, 4(12): A217

DOI

54
Sasaki K, Mo Y, Wang J X, Balasubramanian M, Uribe F, McBreen J, Adzic R R. Pt submonolayers on metal nanoparticles–Novel electrocatalysts for H2 oxidation and O2 reduction. Electrochimica Acta, 2003, 48(25–26): 3841–3849

DOI

55
Wang J X, Brankovic S R, Zhu Y, Hanson J C, Adzic R R. Kinetic characterization of PtRu fuel cell anode calalysts made by spontaneous Pt deposition on Ru nanoparticles. Journal of the Electrochemical Society, 2003, 150(8): A1108–A1117

56
Brankovic S R, McBreen J, Adzic R R.Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 2001, 503(1–2): 99–104

DOI

57
Sasaki K, Wang J X, Balasubramanian M, McBreen J, Uribe F, Adzic R R.Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability.βElectrochim. Acta, 2004, 49(22,23): 3873–3877

58
Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. Journal of Electroanalytical Chemistry, 1974, 54(1): 25–38

DOI

59
Herrero E, Buller L J, Abruña H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chemical Reviews, 2001, 101(7): 1897–1930

DOI PMID

60
Aramata A.Underpotential deposition on single-crystal metals. In: Bockris J O, White R E , Conway B E, eds. Modern Aspects of Electrochemistry. New York: Plenum Publishing, 1997, 31: 70

61
Brankovic S R, Wang J X, Adzic R R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 2001, 474(1–3): L173–L179

DOI

62
Zhang J, Mo Y, Vukmirovic M B, Klie R, Sasaki K, Adzic R R. Platinum monolayer electrocatalysts for O 2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B, 2004, 108(30): 10955–10964

DOI

63
Adzic R R, Zhang J, Sasaki K, Vukmirovic M B, Shao M, Wang J X, Nilekar A U, Mavrikakis M, Valerio J A, Uribe F. Platinum monolayer fuel cell electrocatalysts. Topics in Catalysis, 2007, 46(3–4): 249–262

DOI

64
Zhang J, Vukmirovic M B, Sasaki K, Uribe F, Adzic R R. Platinum monolayer electrocatalysts for oxygen reduction: Effect of substrates, and long-term stability. J Serb Chem Soc, 2005, 70(3): 513–525

DOI

65
Zhang J L, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie——International Edition, 2005, 44(14): 2132–2135

DOI

66
Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Mavrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. Journal of the American Chemical Society, 2005, 127(36): 12480–12481

DOI PMID

67
Zhou W P, Yang X F, Vukmirovic M B, Koel B E, Jiao J, Peng G W, Mavrikakis M, Adzic R R. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. Journal of the American Chemical Society, 2009, 131(35): 12755–12762

DOI PMID

68
Zhang J, Lima F H B, Shao M H, Sasaki K, Wang J X, Hanson J, Adzic R R. Platinum monolayer on nonnoble metal noble metal core shell nanoparticle electrocatalysts for O2 reduction. Journal of Physical Chemistry B, 2005, 109(48): 22701–22704

DOI

69
Zhang J, Sasaki K, Sutter E, Adzic R R.Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222

DOI PMID

70
Wang J X, Inada H, Wu L J, Zhu Y M, Choi Y M, Liu P, Zhou W P, Adzic R R. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Journal of the American Chemical Society, 2009, 131(47): 17298–17302

DOI PMID

71
Sasaki K, Naohara H, Cai Y, Choi Y M, Liu P, Vukmirovic M B,Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angewandte Chemie–International Edition, 2010, 49(46): 8602–8607

72
Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Marković N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315(5811): 493–497

DOI PMID

73
Wu J, Zhang J, Peng Z,Yang S, Wagner F T, Yang H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. Journal of the American Chemical Society, 2010, 132(14): 4984–4985

DOI PMID

74
Zhang J, Yang H, Fang J, Zou S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Letters, 2010, 10(2): 638–644

DOI PMID

Outlines

/