Recent advances in cathode electrocatalysts for PEM fuel cells
Junliang ZHANG
Recent advances in cathode electrocatalysts for PEM fuel cells
Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.
proton exchange membrane fuel cells (PEMFCs) / cathode electrocatalysts / platinum / oxygen reduction reaction (ORR)
[1] |
Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002, 47(22–23): 3571–3594
CrossRef
Google scholar
|
[2] |
Gasteiger H A, Markovic N M, Ross P N. H2 and CO Electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62°C. Journal of Physical Chemistry, 1995, 99(45): 16757–16767
CrossRef
Google scholar
|
[3] |
Mukerjee S, McBreen J. Hydrogen electrocatalysis by carbon supported Pt and Pt alloys. Journal of the Electrochemical Society, 1996, 143(7): 2285–2294
CrossRef
Google scholar
|
[4] |
Neyerlin K C, Gu W B, Jorne J, Gasteiger H A. Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 2007, 154(7): B631–B635
CrossRef
Google scholar
|
[5] |
Tarasevich M R, Sadkowski A, Yeager E. Oxygen Electrochemistry. In: Conway B E, Bockris J O, Yeager E, Khan S U M, White R E. Eds. Comprehensive Treatise in Electrochemistry, New York: Plenum Press, 1983, 301
|
[6] |
Adzic R R. Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross P N, eds. Electrocatalysis, New York: Wiley-VCH, 1998, 197
|
[7] |
Kinoshita K. Electrochemical Oxygen Technology. New York: Wiley, 1992
|
[8] |
Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: Rotating ring-Pt(hkl) disk studies. Journal of Physical Chemistry, 1995, 99(11): 3411–3415
CrossRef
Google scholar
|
[9] |
Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on catalyst loading. Journal of Power Sources, 2004, 127(1–2): 162–171
CrossRef
Google scholar
|
[10] |
Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochimica Acta, 1967, 12(6): 615–628
CrossRef
Google scholar
|
[11] |
Wang J X, Markovic N M, Adzic R R. Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. Journal of Physical Chemistry B, 2004, 108(13): 4127–4133
CrossRef
Google scholar
|
[12] |
Markovic N M, Gasteiger H A, Grgur B N, Ross P N. Oxygen reduction reaction on Pt(111): Effects of bromide. Journal of Electroanalytical Chemistry, 1999, 467(1): 157–163
CrossRef
Google scholar
|
[13] |
Adzic R R. Surface morphology effects in oxygen electrochemistry. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 419
|
[14] |
Uribe F A, Wilson M S, Springer T E, Gottesfeld S. Oxygen reduction (ORR) at the Pt/recast ionomer interface and some general comments on the ORR at Pt/aqueous electrolyte interfaces. In: Scherson D D, Tryk D, Xing X, eds. Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, Pennington: The Electrochem. Soc., 1992, 494
|
[15] |
Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
CrossRef
Google scholar
|
[16] |
Wang J X, Zhang J L, Adzic R R. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. Journal of Physical Chemistry A, 2007, 111(49): 12702–12710
CrossRef
Google scholar
|
[17] |
Wang J X, Uribe F A, Springer T E, Zhang J L, Adzic R R. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: The double Tafel slope and fuel cell applications. Faraday Discussions, 2008, 140: 347–362
CrossRef
Pubmed
Google scholar
|
[18] |
Blurton K F, Greenberg P, Oswin H G, Rutt D R. The electrochemical activity of dispersed platinum. Journal of The Electrochemical Society, 1972, 119(5): 559
CrossRef
Google scholar
|
[19] |
Peuckert M, Yoneda T, Betta R A D, Boudart M. Oxygen reduction on small supported platinum particles. Journal of the Electrochemical Society, 1986, 133(5): 944
CrossRef
Google scholar
|
[20] |
Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. Journal of the Electrochemical Society, 1990, 137(3): 845
CrossRef
Google scholar
|
[21] |
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56(1–2): 9–35
CrossRef
Google scholar
|
[22] |
Landsman D A, Luczak F J. Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 811
|
[23] |
Thompsett D. Pt alloys as oxygen reduction catalysts. In: Vielstich W, Gasteiger H, Lamm A. Eds. Handbook of Fuel Cells – Fundamentals, Technology and Applications, Chichester, UK: Wiley, 2003, 467
|
[24] |
Hammer B, Norskov J K. Theoretical surface science and catalysis–Calculations and concepts. In: Gates B C, Knozinger H, eds. Advances in Catalysis, San Diego: Academic Press Inc, 2000, 45: 71
|
[25] |
Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on gold surfaces: Effect of steps and strain. Journal of Physical Chemistry B, 2003, 107(35): 9298–9307
CrossRef
Google scholar
|
[26] |
Greeley J, Rossmeisl J, Hellman A, Norskov J K.Theoretical trends in particle size effect for the oxygen reduction reaction. Z Phys Chemie-Int J Res Phys Chem Chem Phys, 2007, 221(9,10): 1209–1220
|
[27] |
Mukerjee S, McBreen J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation1. Journal of Electroanalytical Chemistry, 1998, 448(2): 163–171
CrossRef
Google scholar
|
[28] |
Mukerjee S, Srinivasan S, Soriaga M P, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. Journal of the Electrochemical Society, 1995, 142(5): 1409
CrossRef
Google scholar
|
[29] |
Wakabayashi N, Takeichi M, Uchida H, Watanabe M. Temperature dependence of oxygen reduction activity at Pt Fe, Pt Co, and Pt Ni alloy electrodes. Journal of Physical Chemistry B, 2005, 109(12): 5836–5841
CrossRef
Google scholar
|
[30] |
Paulus U A, Wokaun A, Scherer G G, Schmidt T J, Stamenkovic V, Markovic N M, Ross P N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 2002, 47(22,23): 3787–3798
CrossRef
Google scholar
|
[31] |
Koh S, Hahn N, Yu C F, Strasser P. Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2008, 155(12): B1281–B1288
CrossRef
Google scholar
|
[32] |
Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer G G. Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. Journal of Physical Chemistry C, 2009, 113(10): 4069–4077
CrossRef
Google scholar
|
[33] |
Gottesfeld S. The ellipsometric characterization of Pt+Cr alloy surfaces in acid solutions. Journal of Electroanalytical Chemistry, 1986, 205(1,2): 163–184
CrossRef
Google scholar
|
[34] |
Paffett M T, Beery J G, Gottesfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. Journal of the Electrochemical Society, 1988, 135(6): 1431
CrossRef
Google scholar
|
[35] |
Jalan V, Taylor E J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. Journal of the Electrochemical Society, 1983, 130(11): 2299–2302
CrossRef
Google scholar
|
[36] |
Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. Journal of Electroanalytical Chemistry, 1993, 357(1–2): 201–224
CrossRef
Google scholar
|
[37] |
Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. Journal of Electroanalytical Chemistry, 1999, 460(1,2): 258–262
CrossRef
Google scholar
|
[38] |
Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247
CrossRef
Pubmed
Google scholar
|
[39] |
Mun B S, Watanabe M, Rossi M, Stamenkovic V, Markovic N M, Ross P N Jr. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. Journal of Chemical Physics, 2005, 123(20): 204717
CrossRef
Pubmed
Google scholar
|
[40] |
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K.Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556
CrossRef
Pubmed
Google scholar
|
[41] |
Uribe F A, Zawodzinski T A.A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochimica Acta, 2002, 47(22, 23): 3799–3806
CrossRef
Google scholar
|
[42] |
Glass J T, Cahen J G L, Stoner G E, Taylor E J. The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. Journal of the Electrochemical Society, 1987, 134(1): 58–65
CrossRef
Google scholar
|
[43] |
Chen S, Ferreira P J, Sheng W C, Yabuuchi N, Allard L F, Shao-Horn Y.Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. Journal of the American Chemical Society, 2008, 130(42): 13818–13819
CrossRef
Pubmed
Google scholar
|
[44] |
Stamenkovic V, Schmidt T J, Ross P N, Markovic N M.Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. Journal of Physical Chemistry B, 2002, 106(46): 11970–11979
CrossRef
Google scholar
|
[45] |
Xu Y, Ruban A V, Mavrikakis M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. Journal of the American Chemical Society, 2004, 126(14): 4717–4725
CrossRef
Pubmed
Google scholar
|
[46] |
Chen S, Sheng W C, Yabuuchi N, Ferreira P J, Allard L F, Shao-Horn Y. Origin of oxygen reduction reaction activity on “Pt3Co” Nanoparticles: Atomically resolved chemical compositions and structures. Journal of Physical Chemistry C, 2009, 113(3): 1109–1125
CrossRef
Google scholar
|
[47] |
Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Journal of the American Chemical Society, 2006, 128(27): 8813–8819
CrossRef
Pubmed
Google scholar
|
[48] |
Koh S, Leisch J, Toney M F, Strasser P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. Journal of Physical Chemistry C, 2007, 111(9): 3744–3752
CrossRef
Google scholar
|
[49] |
Neyerlin K C, Srivastava R, Yu C F, Strasser P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). Journal of Power Sources, 2009, 186(2): 261–267
CrossRef
Google scholar
|
[50] |
Wang C, van Der Vliet D, Chang K C, You H, Strmcnik D, Schlueter J A, Markovic N M, Stamenkovic V R. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: Size-dependent activity. Journal of Physical Chemistry C, 2009, 113(45): 19365–19368
CrossRef
Google scholar
|
[51] |
Colon-Mercado H R, Popov B N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. Journal of Power Sources, 2006, 155(2): 253–263
|
[52] |
Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. Journal of the American Chemical Society, 2007, 129(42): 12624–12625
CrossRef
Pubmed
Google scholar
|
[53] |
Brankovic S R, Wang J X, Adzic R R. Pt submonolayers on Ru nanoparticles: A novel low Pt loading, nigh CO tolerance fuel cell electrocatalyst. Electrochemical and Solid-State Letters, 2001, 4(12): A217
CrossRef
Google scholar
|
[54] |
Sasaki K, Mo Y, Wang J X, Balasubramanian M, Uribe F, McBreen J, Adzic R R. Pt submonolayers on metal nanoparticles–Novel electrocatalysts for H2 oxidation and O2 reduction. Electrochimica Acta, 2003, 48(25–26): 3841–3849
CrossRef
Google scholar
|
[55] |
Wang J X, Brankovic S R, Zhu Y, Hanson J C, Adzic R R. Kinetic characterization of PtRu fuel cell anode calalysts made by spontaneous Pt deposition on Ru nanoparticles. Journal of the Electrochemical Society, 2003, 150(8): A1108–A1117
|
[56] |
Brankovic S R, McBreen J, Adzic R R.Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 2001, 503(1–2): 99–104
CrossRef
Google scholar
|
[57] |
Sasaki K, Wang J X, Balasubramanian M, McBreen J, Uribe F, Adzic R R.Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability.βElectrochim. Acta, 2004, 49(22,23): 3873–3877
|
[58] |
Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. Journal of Electroanalytical Chemistry, 1974, 54(1): 25–38
CrossRef
Google scholar
|
[59] |
Herrero E, Buller L J, Abruña H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chemical Reviews, 2001, 101(7): 1897–1930
CrossRef
Pubmed
Google scholar
|
[60] |
Aramata A.Underpotential deposition on single-crystal metals. In: Bockris J O, White R E , Conway B E, eds. Modern Aspects of Electrochemistry. New York: Plenum Publishing, 1997, 31: 70
|
[61] |
Brankovic S R, Wang J X, Adzic R R. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 2001, 474(1–3): L173–L179
CrossRef
Google scholar
|
[62] |
Zhang J, Mo Y, Vukmirovic M B, Klie R, Sasaki K, Adzic R R. Platinum monolayer electrocatalysts for O 2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B, 2004, 108(30): 10955–10964
CrossRef
Google scholar
|
[63] |
Adzic R R, Zhang J, Sasaki K, Vukmirovic M B, Shao M, Wang J X, Nilekar A U, Mavrikakis M, Valerio J A, Uribe F. Platinum monolayer fuel cell electrocatalysts. Topics in Catalysis, 2007, 46(3–4): 249–262
CrossRef
Google scholar
|
[64] |
Zhang J, Vukmirovic M B, Sasaki K, Uribe F, Adzic R R. Platinum monolayer electrocatalysts for oxygen reduction: Effect of substrates, and long-term stability. J Serb Chem Soc, 2005, 70(3): 513–525
CrossRef
Google scholar
|
[65] |
Zhang J L, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie——International Edition, 2005, 44(14): 2132–2135
CrossRef
Google scholar
|
[66] |
Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Mavrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. Journal of the American Chemical Society, 2005, 127(36): 12480–12481
CrossRef
Pubmed
Google scholar
|
[67] |
Zhou W P, Yang X F, Vukmirovic M B, Koel B E, Jiao J, Peng G W, Mavrikakis M, Adzic R R. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. Journal of the American Chemical Society, 2009, 131(35): 12755–12762
CrossRef
Pubmed
Google scholar
|
[68] |
Zhang J, Lima F H B, Shao M H, Sasaki K, Wang J X, Hanson J, Adzic R R. Platinum monolayer on nonnoble metal noble metal core shell nanoparticle electrocatalysts for O2 reduction. Journal of Physical Chemistry B, 2005, 109(48): 22701–22704
CrossRef
Google scholar
|
[69] |
Zhang J, Sasaki K, Sutter E, Adzic R R.Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222
CrossRef
Pubmed
Google scholar
|
[70] |
Wang J X, Inada H, Wu L J, Zhu Y M, Choi Y M, Liu P, Zhou W P, Adzic R R. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Journal of the American Chemical Society, 2009, 131(47): 17298–17302
CrossRef
Pubmed
Google scholar
|
[71] |
Sasaki K, Naohara H, Cai Y, Choi Y M, Liu P, Vukmirovic M B,Wang J X, Adzic R R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angewandte Chemie–International Edition, 2010, 49(46): 8602–8607
|
[72] |
Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Marković N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315(5811): 493–497
CrossRef
Pubmed
Google scholar
|
[73] |
Wu J, Zhang J, Peng Z,Yang S, Wagner F T, Yang H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. Journal of the American Chemical Society, 2010, 132(14): 4984–4985
CrossRef
Pubmed
Google scholar
|
[74] |
Zhang J, Yang H, Fang J, Zou S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Letters, 2010, 10(2): 638–644
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |