FEATURE ARTICLE

Developments in semiconductor thermoelectric materials

  • Laifeng LI , 1 ,
  • Zhen CHEN 1,2 ,
  • Min ZHOU 1 ,
  • Rongjin HUANG 1
Expand
  • 1. The Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 19 Jan 2011

Accepted date: 11 Mar 2011

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

Cite this article

Laifeng LI , Zhen CHEN , Min ZHOU , Rongjin HUANG . Developments in semiconductor thermoelectric materials[J]. Frontiers in Energy, 2011 , 5(2) : 125 -136 . DOI: 10.1007/s11708-011-0150-1

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 50802101).
1
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328

DOI PMID

2
Nolas G, Morelli D, Tritt T. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annual Review of Materials Science, 1999, 29(1): 89–116

DOI

3
Nolas G S, Cohn J L, Slack G A, Schujman S B. Semiconducting Ge clathlates: Promising candidate for thermoelectric applications. Applied Physics Letters, 1998, 73(2): 178–180

DOI

4
Rowe D. CRC Handbook of Thermoelectrics. Boca Raton, New York, London, Tokyo: CRC Press, 1995

5
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter, 1993, 47(19): 12727–12731

DOI PMID

6
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

DOI PMID

7
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232

DOI PMID

8
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

DOI PMID

9
Lan Y, Poudel B, Ma Y, Wang D, Dresselhaus M S, Chen G, Ren Z. Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Letters, 2009, 9(4): 1419–1422

DOI PMID

10
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674

DOI PMID

11
Minnich A, Dresselhaus M, Ren Z, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479

DOI

12
Kanatzidis M. Nanostructured thermoelectrics: The new paradigm? Chemistry of Materials, 2009, 22(3): 648–659

DOI

13
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461

DOI PMID

14
Yim W M, Fitzke E V, Rosi F D. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. Journal of Materials Science, 1966, 1(1): 52–65

DOI

15
Yim W M, Fitzke E V. The effects of growth rate on the thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudoternary alloys. Journal of the Electrochemical Society, 1968, 115(5): 556–560

DOI

16
Borkowski K, Przyluski J. Investigation of vacuum deposition of Bi2Te3–based thermoelectric materials. Materials Research Bulletin, 1987, 22(3): 381–387

DOI

17
Chizhevskaya S, Shelimova L. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects. Inorganic Materials, 1995, 31(9): 1083–1095

18
Horák J, Cermák K, Koudelka L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. Journal of Physics and Chemistry of Solids, 1986, 47(8): 805–809

DOI

19
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428

DOI PMID

20
Desai C, Soni P, Bhavsar S. Creep activation energy of flow process in Bi2Te2.8Se0.2 single crystals. Bulletin of Materials Science, 1999, 22(1): 21–23

DOI

21
Suna Z M, Hashimoto H, Keawprak N, Ma A B, Li L F, Barsoum M W. Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. Journal of Materials Research, 2005, 20(4): 895–903

DOI

22
Ji X H, Zhao X B, Zhang Y H, Lu B H, Ni H L. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. Journal of Alloys and Compounds, 2005, 387(1–2): 282–286

DOI

23
Yang J, Chen R, Fan X, Zhu W, Bao S, Duan X. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion. Journal of Alloys and Compounds, 2007, 429(1–2): 156–162

DOI

24
Hong S J, Lee Y S, Byeon J W, Chun B. Optimum dopant content of n-type 95% Bi2Te3 + 5% Bi2Se3 compounds fabricated by gas atomization and extrusion process. Journal of Alloys and Compounds, 2006, 414(1–2): 146–151

DOI

25
Kim S, Yin F, Kagawa Y. Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. Journal of Alloys and Compounds, 2006, 419(1–2): 306–311

DOI

26
Kunjomana A, Chandrasekharan K. Dislocation and microindentation analysis of vapour grown Bi2Te3-xSex whiskers. Crystal Research and Technology, 2008, 43(6): 594–598

DOI

27
Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10(5): 651–658

DOI

28
Xie W, Tang X, Yan Y, Zhang Q, Tritt T M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94(10): 102111

DOI

29
Cao Y, Zhao X, Zhu T, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106

DOI

30
Orihashi M, Noda Y, Chen L-D, Goto T, Hirai T. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 2000, 61(6): 919–923

DOI

31
Jovovic V, Thiagarajan S J, Heremans J P, Komissarova T, Khokhlov D, Nicorici A. Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1-xSnxTe alloys. Journal of Applied Physics, 2008, 103(5): 053710

DOI

32
Gelbstein Y, Dashevsky Z, Dariel M P. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Physica B, Condensed Matter, 2007, 391(2): 256–265

DOI

33
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557

DOI PMID

34
Li H, Cai K F, Wang H F, Wang L, Yin J L, Zhou C W. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. Journal of Solid State Chemistry, 2009, 182(4): 869–874

DOI

35
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821

DOI PMID

36
Slack G A, Hussain M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991, 70(5): 2694–2718

DOI

37
Yildiz M, Dost S. A continuum model for the liquid phase diffusion growth of bulk SiGe single crystals. International Journal of Engineering Science, 2005, 43(13–14): 1059–1080

DOI

38
Yonenaga I, Akashi T, Goto T. Thermal and electrical properties of Czochralski grown GeSi single crystals. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1313–1317

DOI

39
Schilz J, Romanenko V N. Bulk growth of silicon-germanium solid solutions. Journal of Materials Science Materials in Electronics, 1995, 6(5): 265–279

DOI

40
Goldsmid H J. Introduction to Thermoelectricity. Berlin: Springer Verlag, 2009

41
Rowe D M, Shukla V, Savvides N.Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290(5809):765–766

DOI

42
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K. Journal of Applied Physics, 1964, 35(10): 2899–2907

DOI

43
Xu Y-D, Xu G-Y, Ge C-C. Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants. Scripta Materialia, 2008, 58(12): 1070–1073

DOI

44
Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G, Ren Z F. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters, 2008, 93(19): 193121

DOI

45
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674

DOI PMID

46
Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics, 2010, 107(9): 094308

DOI

47
Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Physical Review B, 1997, 56: 15081–15089

DOI

48
Kleinke H. New bulk materials for thermoelectric power generation: Clathrates and complex antimonides. Chemistry of Materials, 2010, 22(3): 604–611

DOI

49
Fleurial J, Caillat T, Borshchevsky A. Skutterudites: An update. In: Proceedings of the XVI International Conference on Thermoelectrics. Dresden: Germany, 1997, 1–11

50
Liu W, Zhang B, Li J, Zhang H L, Zhao L D. Enhanced thermoelectric properties in CoSbTe alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102(10): 103717

DOI

51
Liu W, Zhang B, Zhao L, Li J F. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20(24): 7526–7531

DOI

52
Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Materialia, 2009, 57(11): 3135–3139

DOI

53
Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. Journal of Applied Physics, 2006, 99(2): 23708/1–23708/5

DOI

54
Shi L H, Yao D L, Zhang G, Li B W. Large thermoelectric figure of merit in Si1-xGex nanowires. Applied Physics Letters, 2010, 96(17): 173108

DOI

55
Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. Journal of the American Chemical Society, 2008, 130(13): 4527–4532

DOI PMID

56
Quarez E, Hsu K F, Pcionek R, Frangis N, Polychroniadis E K, Kanatzidis M G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materialsAgPbmSbTe2+m. The myth of solid solutions. Journal of the American Chemical Society, 2005, 127(25): 9177–9190

DOI PMID

57
Androulakis J, Hsu K F, Pcionek R, Kong H, Uher C, D’Angelo J J, Downey A, Hogan T, Kanatzidis M G. Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1-ySny)mSbTe2 + m. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(9): 1170–1173

DOI

58
Poudeu P F P, D’Angelo J, Downey A D, Short J L, Hogan T P, Kanatzidis M G. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angewandte Chemie International Edition, 2006, 45(23): 3835–3839

DOI PMID

59
Poudeu P F P, Gueguen A, Wu C I, Hogan T, Kanatzidis M G. High figure of merit in nanostructured n-Type KPbmSbTem+2 thermoelectric materials. Chemistry of Materials, 2010, 22(3): 1046–1053

DOI

60
Li J F, Liu W S, Zhao L D, Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158

DOI

61
Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

DOI PMID

62
Hicks L D, Harman T C, Sun X, Dresselhaus M. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): 10493–10496

DOI

63
Kim J H, Jung Y C, Suh S H, Kim J S. MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications. Journal of Nanoscience and Nanotechnology, 2006, 6(11): 3325–3328

DOI PMID

64
Deng Y, Cui C W, Zhang N L, Ji T H, Yang Q L, Guo L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Communications, 2006, 138(3): 111–113

DOI

65
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171

DOI PMID

66
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167

DOI PMID

67
Zhang G Q, Yu Q X, Li X G. Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures. Dalton Transactions (Cambridge, England), 2010, 39(4): 993–1004

DOI PMID

68
Wang T, Mehta R, Karthik C, Ganesan P G, Singh B, Jiang W, Ravishankar N, Borca-Tasciuc T, Ramanath G. Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties. Journal of Physical Chemistry C, 2010, 114(4): 1796–1799

DOI

69
Caylor J C, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Applied Physics Letters, 2005, 87(2): 023105

DOI

70
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

DOI PMID

71
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232

DOI PMID

72
Harman T C, Walsh M P, LaForge B E, Turner G W. Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22

DOI

73
Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power of NaCo2O4 single crystals. Physical Review B: Condensed Matter and Materials Physics, 1997, 56(20): R12685–R12687

DOI

74
Takahashi Y, Gotoh Y, Akimoto J. Single-crystal growth, crystal and electronic structure of NaCoO2. Journal of Solid State Chemistry, 2003, 172(1): 22–26

DOI

75
Kishan H, Awana V P S, Ansari M A, Gupta A, Saxena R B, Ganesan V, Narlikar A V, Cardoso C A, Nirmala R, Buddhikot D, Malik S K. Resistivity and Thermoelectric power of NaxCoO2 (x = 1.0, 0.7 and 0.6) system. Journal of Applied Physics, 2005, 97(10): 10A904–10A904-3

DOI

76
Jood P, Peleckis G, Wang X L, Dou S X, Yamauchi H, Karppinen M. Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide. Journal of Applied Physics, 2010, 107(9): 09D716–09D716-3

DOI

77
Kawata T, Iguchi Y, Itoh T, Takahata K, Terasaki I. Na-site substitution effects on the thermoelectric properties of NaCo2O4. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(15): 10584–10587

DOI

78
Nagira T, Ito M, Katsuyama S, Majima K, Nagai H. Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35). Journal of Alloys and Compounds, 2003, 348(1–2): 263–269

DOI

79
Peleckis G, Karppinen M, Yamauchi H. Isovalent substitution effects in the Na layer of γ-Na0.75CoO2 thermoelectric oxide. Physica. C, Superconductivity, 2007, 460–462 (Part 1): 485–486

DOI

80
Park K, Jang K U. Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co. Materials Letters, 2006, 60(8): 1106–1110

DOI

81
Miyazaki Y, Onoda M, Oku T, Kikuchi M, Ishii Y, Ono Y, Morii Y, Kajitani T. Modulated structure of the thermoelectric compound [Ca2CoO3]0.62 CoO2. Journal of the Physical Society of Japan, 2002, 71(2): 491–497

DOI

82
Shikanoa M, Funahashi R. Electrical and thermal properties of single-crystalline(Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters, 2003, 82(12): 1851–1853

DOI

83
Prevel M, Lemonnier S, Klein Y, Hébert S, Chateigner D, Ouladdiaf B, Noudem J G. Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. Journal of Applied Physics, 2005, 98(9): 093706

DOI

84
Takeuchi T, Kondo T, Soda K, Mizutani U, Funahashi R, Shikano M, Tsuda S, Yokoya T, Shin S, Muro T. Electronic structure and large thermoelectric power in Ca3Co4O9. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137: 595–599

DOI

85
Takeuchi T, Kondo T, Takami T, Takahashi H, Ikuta H, Mizutani U, Soda K, Funahashi R, Shikano M, Mikami M, Tsuda S, Yokoya T, Shin S, Muro T. Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(12): 125410

DOI

86
Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature, 2003, 422(6927): 53–55

DOI PMID

87
Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B: Condensed Matter and Materials Physics, 1999, 59(13): 8615–8621

DOI

88
Zhou M, Chen L D, Feng C D, Wang D L, Li J F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb. Journal of Applied Physics, 2009, 101(11): 113714

DOI

89
Zou M M, Li J F, Du B, Liu D W, Kita T. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. Journal of Solid State Chemistry, 2009, 182(11): 3138–3142

DOI

90
Barth J, Schoop M, Gloskovskii A, Shkabko A, Weidenkaff A, Felser C. Investigation of the thermoelectric properties of the series TiCo1-xNixSnxSb1-x. Zeitschrift fur Anorganische und Allgemeine Chemie, 2010, 636(1): 132–136

DOI

91
Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165

DOI

92
Culp S, Poon S, Hickman N, Tritt T M, Blumm J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Applied Physics Letters, 2006, 88(4): 042106

DOI

93
Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chemical Communications (Cambridge), 2010, 46(44): 8311–8324

DOI PMID

94
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935

DOI

95
El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Conversion and Management, 2003, 44(11): 1755–1772

DOI

96
Mayer P, Ram R. Thin-film thermoelectric generator element characterization. In: Proceedings of 24th International Conference on Thermoelectrics, ICT 2005. Clemson, SC, USA 2005, 280–283

97
Kim I H. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 2000, 43(5–6): 221–224

DOI

98
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114

DOI PMID

99
Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. In: Proceedings ICT’02. 2003, 418–423

100
Lange R G, Carroll W P. Review of recent advances of radioisotope power systems. Energy Conversion and Management, 2008, 49(3): 393–401

DOI

101
Amatya R, Ram R. Solar Thermoelectric Generator for Micropower Applications. Journal of Electronic Materials, 2010, 39(9): 1735–1740

DOI

102
Xie M, Gruen D M. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies. Journal of Physical Chemistry B, 2010, 114(45): 14339–14342

DOI PMID

103
Goldsmid H. Electronic refrigeration, London: Pion Limited, 1986, 227

104
Redus R H, Huber A C, Pantazis J A. Improved thermoelectrically cooled X-ray detectors and electronics. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1–2): 214–219

DOI

105
Bale G, Holland A, Seller P, Lowe B. Cooled CdZnTe detectors for X-ray astronomy. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1–2): 150–154

DOI

106
Huebener R P, Tsuei C C. Prospects for Peltier cooling of superconducting electronics. Cryogenics, 1998, 38(3): 325–328

DOI

107
Bojić M, Savanović G, Trifunović N, Radović L, Šaljić D. Thermoelectric cooling of a train carriage by using a coldness-recovery device. Energy, 1997, 22(5): 493–500

DOI

108
Morrow R C, Crabb T M. Biomass Production System (BPS) plant growth unit. Advances in Space Research, 2000, 26(2): 289–298

DOI PMID

Outlines

/