Developments in semiconductor thermoelectric materials
Received date: 19 Jan 2011
Accepted date: 11 Mar 2011
Published date: 05 Jun 2011
Copyright
A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.
Laifeng LI , Zhen CHEN , Min ZHOU , Rongjin HUANG . Developments in semiconductor thermoelectric materials[J]. Frontiers in Energy, 2011 , 5(2) : 125 -136 . DOI: 10.1007/s11708-011-0150-1
1 |
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328
|
2 |
Nolas G, Morelli D, Tritt T. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annual Review of Materials Science, 1999, 29(1): 89–116
|
3 |
Nolas G S, Cohn J L, Slack G A, Schujman S B. Semiconducting Ge clathlates: Promising candidate for thermoelectric applications. Applied Physics Letters, 1998, 73(2): 178–180
|
4 |
Rowe D. CRC Handbook of Thermoelectrics. Boca Raton, New York, London, Tokyo: CRC Press, 1995
|
5 |
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter, 1993, 47(19): 12727–12731
|
6 |
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
|
7 |
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232
|
8 |
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
|
9 |
Lan Y, Poudel B, Ma Y, Wang D, Dresselhaus M S, Chen G, Ren Z. Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Letters, 2009, 9(4): 1419–1422
|
10 |
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
|
11 |
Minnich A, Dresselhaus M, Ren Z, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479
|
12 |
Kanatzidis M. Nanostructured thermoelectrics: The new paradigm? Chemistry of Materials, 2009, 22(3): 648–659
|
13 |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
|
14 |
Yim W M, Fitzke E V, Rosi F D. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. Journal of Materials Science, 1966, 1(1): 52–65
|
15 |
Yim W M, Fitzke E V. The effects of growth rate on the thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudoternary alloys. Journal of the Electrochemical Society, 1968, 115(5): 556–560
|
16 |
Borkowski K, Przyluski J. Investigation of vacuum deposition of Bi2Te3–based thermoelectric materials. Materials Research Bulletin, 1987, 22(3): 381–387
|
17 |
Chizhevskaya S, Shelimova L. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects. Inorganic Materials, 1995, 31(9): 1083–1095
|
18 |
Horák J, Cermák K, Koudelka L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. Journal of Physics and Chemistry of Solids, 1986, 47(8): 805–809
|
19 |
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428
|
20 |
Desai C, Soni P, Bhavsar S. Creep activation energy of flow process in Bi2Te2.8Se0.2 single crystals. Bulletin of Materials Science, 1999, 22(1): 21–23
|
21 |
Suna Z M, Hashimoto H, Keawprak N, Ma A B, Li L F, Barsoum M W. Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. Journal of Materials Research, 2005, 20(4): 895–903
|
22 |
Ji X H, Zhao X B, Zhang Y H, Lu B H, Ni H L. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. Journal of Alloys and Compounds, 2005, 387(1–2): 282–286
|
23 |
Yang J, Chen R, Fan X, Zhu W, Bao S, Duan X. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion. Journal of Alloys and Compounds, 2007, 429(1–2): 156–162
|
24 |
Hong S J, Lee Y S, Byeon J W, Chun B. Optimum dopant content of n-type 95% Bi2Te3 + 5% Bi2Se3 compounds fabricated by gas atomization and extrusion process. Journal of Alloys and Compounds, 2006, 414(1–2): 146–151
|
25 |
Kim S, Yin F, Kagawa Y. Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. Journal of Alloys and Compounds, 2006, 419(1–2): 306–311
|
26 |
Kunjomana A, Chandrasekharan K. Dislocation and microindentation analysis of vapour grown Bi2Te3-xSex whiskers. Crystal Research and Technology, 2008, 43(6): 594–598
|
27 |
Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10(5): 651–658
|
28 |
Xie W, Tang X, Yan Y, Zhang Q, Tritt T M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94(10): 102111
|
29 |
Cao Y, Zhao X, Zhu T, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106
|
30 |
Orihashi M, Noda Y, Chen L-D, Goto T, Hirai T. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 2000, 61(6): 919–923
|
31 |
Jovovic V, Thiagarajan S J, Heremans J P, Komissarova T, Khokhlov D, Nicorici A. Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1-xSnxTe alloys. Journal of Applied Physics, 2008, 103(5): 053710
|
32 |
Gelbstein Y, Dashevsky Z, Dariel M P. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Physica B, Condensed Matter, 2007, 391(2): 256–265
|
33 |
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557
|
34 |
Li H, Cai K F, Wang H F, Wang L, Yin J L, Zhou C W. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. Journal of Solid State Chemistry, 2009, 182(4): 869–874
|
35 |
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821
|
36 |
Slack G A, Hussain M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991, 70(5): 2694–2718
|
37 |
Yildiz M, Dost S. A continuum model for the liquid phase diffusion growth of bulk SiGe single crystals. International Journal of Engineering Science, 2005, 43(13–14): 1059–1080
|
38 |
Yonenaga I, Akashi T, Goto T. Thermal and electrical properties of Czochralski grown GeSi single crystals. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1313–1317
|
39 |
Schilz J, Romanenko V N. Bulk growth of silicon-germanium solid solutions. Journal of Materials Science Materials in Electronics, 1995, 6(5): 265–279
|
40 |
Goldsmid H J. Introduction to Thermoelectricity. Berlin: Springer Verlag, 2009
|
41 |
Rowe D M, Shukla V, Savvides N.Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290(5809):765–766
|
42 |
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K. Journal of Applied Physics, 1964, 35(10): 2899–2907
|
43 |
Xu Y-D, Xu G-Y, Ge C-C. Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants. Scripta Materialia, 2008, 58(12): 1070–1073
|
44 |
Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G, Ren Z F. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters, 2008, 93(19): 193121
|
45 |
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
|
46 |
Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics, 2010, 107(9): 094308
|
47 |
Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Physical Review B, 1997, 56: 15081–15089
|
48 |
Kleinke H. New bulk materials for thermoelectric power generation: Clathrates and complex antimonides. Chemistry of Materials, 2010, 22(3): 604–611
|
49 |
Fleurial J, Caillat T, Borshchevsky A. Skutterudites: An update. In: Proceedings of the XVI International Conference on Thermoelectrics. Dresden: Germany, 1997, 1–11
|
50 |
Liu W, Zhang B, Li J, Zhang H L, Zhao L D. Enhanced thermoelectric properties in CoSbTe alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102(10): 103717
|
51 |
Liu W, Zhang B, Zhao L, Li J F. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20(24): 7526–7531
|
52 |
Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Materialia, 2009, 57(11): 3135–3139
|
53 |
Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. Journal of Applied Physics, 2006, 99(2): 23708/1–23708/5
|
54 |
Shi L H, Yao D L, Zhang G, Li B W. Large thermoelectric figure of merit in Si1-xGex nanowires. Applied Physics Letters, 2010, 96(17): 173108
|
55 |
Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. Journal of the American Chemical Society, 2008, 130(13): 4527–4532
|
56 |
Quarez E, Hsu K F, Pcionek R, Frangis N, Polychroniadis E K, Kanatzidis M G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materialsAgPbmSbTe2+m. The myth of solid solutions. Journal of the American Chemical Society, 2005, 127(25): 9177–9190
|
57 |
Androulakis J, Hsu K F, Pcionek R, Kong H, Uher C, D’Angelo J J, Downey A, Hogan T, Kanatzidis M G. Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1-ySny)mSbTe2 + m. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(9): 1170–1173
|
58 |
Poudeu P F P, D’Angelo J, Downey A D, Short J L, Hogan T P, Kanatzidis M G. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angewandte Chemie International Edition, 2006, 45(23): 3835–3839
|
59 |
Poudeu P F P, Gueguen A, Wu C I, Hogan T, Kanatzidis M G. High figure of merit in nanostructured n-Type KPbmSbTem+2 thermoelectric materials. Chemistry of Materials, 2010, 22(3): 1046–1053
|
60 |
Li J F, Liu W S, Zhao L D, Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158
|
61 |
Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134
|
62 |
Hicks L D, Harman T C, Sun X, Dresselhaus M. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): 10493–10496
|
63 |
Kim J H, Jung Y C, Suh S H, Kim J S. MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications. Journal of Nanoscience and Nanotechnology, 2006, 6(11): 3325–3328
|
64 |
Deng Y, Cui C W, Zhang N L, Ji T H, Yang Q L, Guo L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Communications, 2006, 138(3): 111–113
|
65 |
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171
|
66 |
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167
|
67 |
Zhang G Q, Yu Q X, Li X G. Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures. Dalton Transactions (Cambridge, England), 2010, 39(4): 993–1004
|
68 |
Wang T, Mehta R, Karthik C, Ganesan P G, Singh B, Jiang W, Ravishankar N, Borca-Tasciuc T, Ramanath G. Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties. Journal of Physical Chemistry C, 2010, 114(4): 1796–1799
|
69 |
Caylor J C, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Applied Physics Letters, 2005, 87(2): 023105
|
70 |
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
|
71 |
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232
|
72 |
Harman T C, Walsh M P, LaForge B E, Turner G W. Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22
|
73 |
Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power of NaCo2O4 single crystals. Physical Review B: Condensed Matter and Materials Physics, 1997, 56(20): R12685–R12687
|
74 |
Takahashi Y, Gotoh Y, Akimoto J. Single-crystal growth, crystal and electronic structure of NaCoO2. Journal of Solid State Chemistry, 2003, 172(1): 22–26
|
75 |
Kishan H, Awana V P S, Ansari M A, Gupta A, Saxena R B, Ganesan V, Narlikar A V, Cardoso C A, Nirmala R, Buddhikot D, Malik S K. Resistivity and Thermoelectric power of NaxCoO2 (x = 1.0, 0.7 and 0.6) system. Journal of Applied Physics, 2005, 97(10): 10A904–10A904-3
|
76 |
Jood P, Peleckis G, Wang X L, Dou S X, Yamauchi H, Karppinen M. Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide. Journal of Applied Physics, 2010, 107(9): 09D716–09D716-3
|
77 |
Kawata T, Iguchi Y, Itoh T, Takahata K, Terasaki I. Na-site substitution effects on the thermoelectric properties of NaCo2O4. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(15): 10584–10587
|
78 |
Nagira T, Ito M, Katsuyama S, Majima K, Nagai H. Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35). Journal of Alloys and Compounds, 2003, 348(1–2): 263–269
|
79 |
Peleckis G, Karppinen M, Yamauchi H. Isovalent substitution effects in the Na layer of γ-Na0.75CoO2 thermoelectric oxide. Physica. C, Superconductivity, 2007, 460–462 (Part 1): 485–486
|
80 |
Park K, Jang K U. Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co. Materials Letters, 2006, 60(8): 1106–1110
|
81 |
Miyazaki Y, Onoda M, Oku T, Kikuchi M, Ishii Y, Ono Y, Morii Y, Kajitani T. Modulated structure of the thermoelectric compound [Ca2CoO3]0.62 CoO2. Journal of the Physical Society of Japan, 2002, 71(2): 491–497
|
82 |
Shikanoa M, Funahashi R. Electrical and thermal properties of single-crystalline(Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters, 2003, 82(12): 1851–1853
|
83 |
Prevel M, Lemonnier S, Klein Y, Hébert S, Chateigner D, Ouladdiaf B, Noudem J G. Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. Journal of Applied Physics, 2005, 98(9): 093706
|
84 |
Takeuchi T, Kondo T, Soda K, Mizutani U, Funahashi R, Shikano M, Tsuda S, Yokoya T, Shin S, Muro T. Electronic structure and large thermoelectric power in Ca3Co4O9. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137: 595–599
|
85 |
Takeuchi T, Kondo T, Takami T, Takahashi H, Ikuta H, Mizutani U, Soda K, Funahashi R, Shikano M, Mikami M, Tsuda S, Yokoya T, Shin S, Muro T. Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(12): 125410
|
86 |
Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature, 2003, 422(6927): 53–55
|
87 |
Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B: Condensed Matter and Materials Physics, 1999, 59(13): 8615–8621
|
88 |
Zhou M, Chen L D, Feng C D, Wang D L, Li J F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb. Journal of Applied Physics, 2009, 101(11): 113714
|
89 |
Zou M M, Li J F, Du B, Liu D W, Kita T. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. Journal of Solid State Chemistry, 2009, 182(11): 3138–3142
|
90 |
Barth J, Schoop M, Gloskovskii A, Shkabko A, Weidenkaff A, Felser C. Investigation of the thermoelectric properties of the series TiCo1-xNixSnxSb1-x. Zeitschrift fur Anorganische und Allgemeine Chemie, 2010, 636(1): 132–136
|
91 |
Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165
|
92 |
Culp S, Poon S, Hickman N, Tritt T M, Blumm J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Applied Physics Letters, 2006, 88(4): 042106
|
93 |
Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chemical Communications (Cambridge), 2010, 46(44): 8311–8324
|
94 |
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935
|
95 |
El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Conversion and Management, 2003, 44(11): 1755–1772
|
96 |
Mayer P, Ram R. Thin-film thermoelectric generator element characterization. In: Proceedings of 24th International Conference on Thermoelectrics, ICT 2005. Clemson, SC, USA 2005, 280–283
|
97 |
Kim I H. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 2000, 43(5–6): 221–224
|
98 |
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114
|
99 |
Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. In: Proceedings ICT’02. 2003, 418–423
|
100 |
Lange R G, Carroll W P. Review of recent advances of radioisotope power systems. Energy Conversion and Management, 2008, 49(3): 393–401
|
101 |
Amatya R, Ram R. Solar Thermoelectric Generator for Micropower Applications. Journal of Electronic Materials, 2010, 39(9): 1735–1740
|
102 |
Xie M, Gruen D M. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies. Journal of Physical Chemistry B, 2010, 114(45): 14339–14342
|
103 |
Goldsmid H. Electronic refrigeration, London: Pion Limited, 1986, 227
|
104 |
Redus R H, Huber A C, Pantazis J A. Improved thermoelectrically cooled X-ray detectors and electronics. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1–2): 214–219
|
105 |
Bale G, Holland A, Seller P, Lowe B. Cooled CdZnTe detectors for X-ray astronomy. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1–2): 150–154
|
106 |
Huebener R P, Tsuei C C. Prospects for Peltier cooling of superconducting electronics. Cryogenics, 1998, 38(3): 325–328
|
107 |
Bojić M, Savanović G, Trifunović N, Radović L, Šaljić D. Thermoelectric cooling of a train carriage by using a coldness-recovery device. Energy, 1997, 22(5): 493–500
|
108 |
Morrow R C, Crabb T M. Biomass Production System (BPS) plant growth unit. Advances in Space Research, 2000, 26(2): 289–298
|
/
〈 | 〉 |