Developments in semiconductor thermoelectric materials

Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG

PDF(563 KB)
PDF(563 KB)
Front. Energy ›› 2011, Vol. 5 ›› Issue (2) : 125-136. DOI: 10.1007/s11708-011-0150-1
FEATURE ARTICLE
FEATURE ARTICLE

Developments in semiconductor thermoelectric materials

Author information +
History +

Abstract

A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

Keywords

thermoelectric materials / thermoelectric figure of merit / applications

Cite this article

Download citation ▾
Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG. Developments in semiconductor thermoelectric materials. Front Energ, 2011, 5(2): 125‒136 https://doi.org/10.1007/s11708-011-0150-1

References

[1]
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328
CrossRef Pubmed Google scholar
[2]
Nolas G, Morelli D, Tritt T. Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annual Review of Materials Science, 1999, 29(1): 89–116
CrossRef Google scholar
[3]
Nolas G S, Cohn J L, Slack G A, Schujman S B. Semiconducting Ge clathlates: Promising candidate for thermoelectric applications. Applied Physics Letters, 1998, 73(2): 178–180
CrossRef Google scholar
[4]
Rowe D. CRC Handbook of Thermoelectrics. Boca Raton, New York, London, Tokyo: CRC Press, 1995
[5]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter, 1993, 47(19): 12727–12731
CrossRef Pubmed Google scholar
[6]
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
CrossRef Pubmed Google scholar
[7]
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232
CrossRef Pubmed Google scholar
[8]
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
CrossRef Pubmed Google scholar
[9]
Lan Y, Poudel B, Ma Y, Wang D, Dresselhaus M S, Chen G, Ren Z. Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Letters, 2009, 9(4): 1419–1422
CrossRef Pubmed Google scholar
[10]
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
CrossRef Pubmed Google scholar
[11]
Minnich A, Dresselhaus M, Ren Z, Chen G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479
CrossRef Google scholar
[12]
Kanatzidis M. Nanostructured thermoelectrics: The new paradigm? Chemistry of Materials, 2009, 22(3): 648–659
CrossRef Google scholar
[13]
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
CrossRef Pubmed Google scholar
[14]
Yim W M, Fitzke E V, Rosi F D. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. Journal of Materials Science, 1966, 1(1): 52–65
CrossRef Google scholar
[15]
Yim W M, Fitzke E V. The effects of growth rate on the thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudoternary alloys. Journal of the Electrochemical Society, 1968, 115(5): 556–560
CrossRef Google scholar
[16]
Borkowski K, Przyluski J. Investigation of vacuum deposition of Bi2Te3–based thermoelectric materials. Materials Research Bulletin, 1987, 22(3): 381–387
CrossRef Google scholar
[17]
Chizhevskaya S, Shelimova L. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects. Inorganic Materials, 1995, 31(9): 1083–1095
[18]
Horák J, Cermák K, Koudelka L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. Journal of Physics and Chemistry of Solids, 1986, 47(8): 805–809
CrossRef Google scholar
[19]
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428
CrossRef Pubmed Google scholar
[20]
Desai C, Soni P, Bhavsar S. Creep activation energy of flow process in Bi2Te2.8Se0.2 single crystals. Bulletin of Materials Science, 1999, 22(1): 21–23
CrossRef Google scholar
[21]
Suna Z M, Hashimoto H, Keawprak N, Ma A B, Li L F, Barsoum M W. Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy. Journal of Materials Research, 2005, 20(4): 895–903
CrossRef Google scholar
[22]
Ji X H, Zhao X B, Zhang Y H, Lu B H, Ni H L. Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. Journal of Alloys and Compounds, 2005, 387(1–2): 282–286
CrossRef Google scholar
[23]
Yang J, Chen R, Fan X, Zhu W, Bao S, Duan X. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion. Journal of Alloys and Compounds, 2007, 429(1–2): 156–162
CrossRef Google scholar
[24]
Hong S J, Lee Y S, Byeon J W, Chun B. Optimum dopant content of n-type 95% Bi2Te3 + 5% Bi2Se3 compounds fabricated by gas atomization and extrusion process. Journal of Alloys and Compounds, 2006, 414(1–2): 146–151
CrossRef Google scholar
[25]
Kim S, Yin F, Kagawa Y. Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. Journal of Alloys and Compounds, 2006, 419(1–2): 306–311
CrossRef Google scholar
[26]
Kunjomana A, Chandrasekharan K. Dislocation and microindentation analysis of vapour grown Bi2Te3-xSex whiskers. Crystal Research and Technology, 2008, 43(6): 594–598
CrossRef Google scholar
[27]
Zhao L D, Zhang B P, Li J F, Zhang H L, Liu W S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10(5): 651–658
CrossRef Google scholar
[28]
Xie W, Tang X, Yan Y, Zhang Q, Tritt T M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94(10): 102111
CrossRef Google scholar
[29]
Cao Y, Zhao X, Zhu T, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106
CrossRef Google scholar
[30]
Orihashi M, Noda Y, Chen L-D, Goto T, Hirai T. Effect of tin content on thermoelectric properties of p-type lead tin telluride. Journal of Physics and Chemistry of Solids, 2000, 61(6): 919–923
CrossRef Google scholar
[31]
Jovovic V, Thiagarajan S J, Heremans J P, Komissarova T, Khokhlov D, Nicorici A. Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1-xSnxTe alloys. Journal of Applied Physics, 2008, 103(5): 053710
CrossRef Google scholar
[32]
Gelbstein Y, Dashevsky Z, Dariel M P. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Physica B, Condensed Matter, 2007, 391(2): 256–265
CrossRef Google scholar
[33]
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557
CrossRef Pubmed Google scholar
[34]
Li H, Cai K F, Wang H F, Wang L, Yin J L, Zhou C W. The influence of co-doping Ag and Sb on microstructure and thermoelectric properties of PbTe prepared by combining hydrothermal synthesis and melting. Journal of Solid State Chemistry, 2009, 182(4): 869–874
CrossRef Google scholar
[35]
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821
CrossRef Pubmed Google scholar
[36]
Slack G A, Hussain M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991, 70(5): 2694–2718
CrossRef Google scholar
[37]
Yildiz M, Dost S. A continuum model for the liquid phase diffusion growth of bulk SiGe single crystals. International Journal of Engineering Science, 2005, 43(13–14): 1059–1080
CrossRef Google scholar
[38]
Yonenaga I, Akashi T, Goto T. Thermal and electrical properties of Czochralski grown GeSi single crystals. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1313–1317
CrossRef Google scholar
[39]
Schilz J, Romanenko V N. Bulk growth of silicon-germanium solid solutions. Journal of Materials Science Materials in Electronics, 1995, 6(5): 265–279
CrossRef Google scholar
[40]
Goldsmid H J. Introduction to Thermoelectricity. Berlin: Springer Verlag, 2009
[41]
Rowe D M, Shukla V, Savvides N.Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290(5809):765–766
CrossRef Google scholar
[42]
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K. Journal of Applied Physics, 1964, 35(10): 2899–2907
CrossRef Google scholar
[43]
Xu Y-D, Xu G-Y, Ge C-C. Improvement in thermoelectric properties of n-type Si95Ge5 alloys by heavy multi-dopants. Scripta Materialia, 2008, 58(12): 1070–1073
CrossRef Google scholar
[44]
Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G, Ren Z F. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physics Letters, 2008, 93(19): 193121
CrossRef Google scholar
[45]
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
CrossRef Pubmed Google scholar
[46]
Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied Physics, 2010, 107(9): 094308
CrossRef Google scholar
[47]
Sales B C, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Physical Review B, 1997, 56: 15081–15089
CrossRef Google scholar
[48]
Kleinke H. New bulk materials for thermoelectric power generation: Clathrates and complex antimonides. Chemistry of Materials, 2010, 22(3): 604–611
CrossRef Google scholar
[49]
Fleurial J, Caillat T, Borshchevsky A. Skutterudites: An update. In: Proceedings of the XVI International Conference on Thermoelectrics. Dresden: Germany, 1997, 1–11
[50]
Liu W, Zhang B, Li J, Zhang H L, Zhao L D. Enhanced thermoelectric properties in CoSbTe alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102(10): 103717
CrossRef Google scholar
[51]
Liu W, Zhang B, Zhao L, Li J F. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20(24): 7526–7531
CrossRef Google scholar
[52]
Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y, Yang J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Materialia, 2009, 57(11): 3135–3139
CrossRef Google scholar
[53]
Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D, Stucky G D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. Journal of Applied Physics, 2006, 99(2): 23708/1–23708/5
CrossRef Google scholar
[54]
Shi L H, Yao D L, Zhang G, Li B W. Large thermoelectric figure of merit in Si1-xGex nanowires. Applied Physics Letters, 2010, 96(17): 173108
CrossRef Google scholar
[55]
Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. Journal of the American Chemical Society, 2008, 130(13): 4527–4532
CrossRef Pubmed Google scholar
[56]
Quarez E, Hsu K F, Pcionek R, Frangis N, Polychroniadis E K, Kanatzidis M G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materialsAgPbmSbTe2+m. The myth of solid solutions. Journal of the American Chemical Society, 2005, 127(25): 9177–9190
CrossRef Pubmed Google scholar
[57]
Androulakis J, Hsu K F, Pcionek R, Kong H, Uher C, D’Angelo J J, Downey A, Hogan T, Kanatzidis M G. Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1-ySny)mSbTe2 + m. Advanced Materials (Deerfield Beach, Fla.), 2006, 18(9): 1170–1173
CrossRef Google scholar
[58]
Poudeu P F P, D’Angelo J, Downey A D, Short J L, Hogan T P, Kanatzidis M G. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angewandte Chemie International Edition, 2006, 45(23): 3835–3839
CrossRef Pubmed Google scholar
[59]
Poudeu P F P, Gueguen A, Wu C I, Hogan T, Kanatzidis M G. High figure of merit in nanostructured n-Type KPbmSbTem+2 thermoelectric materials. Chemistry of Materials, 2010, 22(3): 1046–1053
CrossRef Google scholar
[60]
Li J F, Liu W S, Zhao L D, Zhou M. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158
CrossRef Google scholar
[61]
Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134
CrossRef Pubmed Google scholar
[62]
Hicks L D, Harman T C, Sun X, Dresselhaus M. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): 10493–10496
CrossRef Google scholar
[63]
Kim J H, Jung Y C, Suh S H, Kim J S. MOCVD of Bi2Te3 and Sb2Te3 on GaAs substrates for thin-film thermoelectric applications. Journal of Nanoscience and Nanotechnology, 2006, 6(11): 3325–3328
CrossRef Pubmed Google scholar
[64]
Deng Y, Cui C W, Zhang N L, Ji T H, Yang Q L, Guo L. Fabrication of bismuth telluride nanotubes via a simple solvothermal process. Solid State Communications, 2006, 138(3): 111–113
CrossRef Google scholar
[65]
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171
CrossRef Pubmed Google scholar
[66]
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167
CrossRef Pubmed Google scholar
[67]
Zhang G Q, Yu Q X, Li X G. Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures. Dalton Transactions (Cambridge, England), 2010, 39(4): 993–1004
CrossRef Pubmed Google scholar
[68]
Wang T, Mehta R, Karthik C, Ganesan P G, Singh B, Jiang W, Ravishankar N, Borca-Tasciuc T, Ramanath G. Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties. Journal of Physical Chemistry C, 2010, 114(4): 1796–1799
CrossRef Google scholar
[69]
Caylor J C, Coonley K, Stuart J, Colpitts T, Venkatasubramanian R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Applied Physics Letters, 2005, 87(2): 023105
CrossRef Google scholar
[70]
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
CrossRef Pubmed Google scholar
[71]
Harman T C, Taylor P J, Walsh M P, LaForge B E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232
CrossRef Pubmed Google scholar
[72]
Harman T C, Walsh M P, LaForge B E, Turner G W. Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22
CrossRef Google scholar
[73]
Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power of NaCo2O4 single crystals. Physical Review B: Condensed Matter and Materials Physics, 1997, 56(20): R12685–R12687
CrossRef Google scholar
[74]
Takahashi Y, Gotoh Y, Akimoto J. Single-crystal growth, crystal and electronic structure of NaCoO2. Journal of Solid State Chemistry, 2003, 172(1): 22–26
CrossRef Google scholar
[75]
Kishan H, Awana V P S, Ansari M A, Gupta A, Saxena R B, Ganesan V, Narlikar A V, Cardoso C A, Nirmala R, Buddhikot D, Malik S K. Resistivity and Thermoelectric power of NaxCoO2 (x = 1.0, 0.7 and 0.6) system. Journal of Applied Physics, 2005, 97(10): 10A904–10A904-3
CrossRef Google scholar
[76]
Jood P, Peleckis G, Wang X L, Dou S X, Yamauchi H, Karppinen M. Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide. Journal of Applied Physics, 2010, 107(9): 09D716–09D716-3
CrossRef Google scholar
[77]
Kawata T, Iguchi Y, Itoh T, Takahata K, Terasaki I. Na-site substitution effects on the thermoelectric properties of NaCo2O4. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(15): 10584–10587
CrossRef Google scholar
[78]
Nagira T, Ito M, Katsuyama S, Majima K, Nagai H. Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35). Journal of Alloys and Compounds, 2003, 348(1–2): 263–269
CrossRef Google scholar
[79]
Peleckis G, Karppinen M, Yamauchi H. Isovalent substitution effects in the Na layer of γ-Na0.75CoO2 thermoelectric oxide. Physica. C, Superconductivity, 2007, 460–462 (Part 1): 485–486
CrossRef Google scholar
[80]
Park K, Jang K U. Improvement in high-temperature thermoelectric properties of NaCo2O4 through partial substitution of Ni for Co. Materials Letters, 2006, 60(8): 1106–1110
CrossRef Google scholar
[81]
Miyazaki Y, Onoda M, Oku T, Kikuchi M, Ishii Y, Ono Y, Morii Y, Kajitani T. Modulated structure of the thermoelectric compound [Ca2CoO3]0.62 CoO2. Journal of the Physical Society of Japan, 2002, 71(2): 491–497
CrossRef Google scholar
[82]
Shikanoa M, Funahashi R. Electrical and thermal properties of single-crystalline(Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters, 2003, 82(12): 1851–1853
CrossRef Google scholar
[83]
Prevel M, Lemonnier S, Klein Y, Hébert S, Chateigner D, Ouladdiaf B, Noudem J G. Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. Journal of Applied Physics, 2005, 98(9): 093706
CrossRef Google scholar
[84]
Takeuchi T, Kondo T, Soda K, Mizutani U, Funahashi R, Shikano M, Tsuda S, Yokoya T, Shin S, Muro T. Electronic structure and large thermoelectric power in Ca3Co4O9. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137: 595–599
CrossRef Google scholar
[85]
Takeuchi T, Kondo T, Takami T, Takahashi H, Ikuta H, Mizutani U, Soda K, Funahashi R, Shikano M, Mikami M, Tsuda S, Yokoya T, Shin S, Muro T. Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(12): 125410
CrossRef Google scholar
[86]
Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki T. Superconductivity in two-dimensional CoO2 layers. Nature, 2003, 422(6927): 53–55
CrossRef Pubmed Google scholar
[87]
Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B: Condensed Matter and Materials Physics, 1999, 59(13): 8615–8621
CrossRef Google scholar
[88]
Zhou M, Chen L D, Feng C D, Wang D L, Li J F. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb. Journal of Applied Physics, 2009, 101(11): 113714
CrossRef Google scholar
[89]
Zou M M, Li J F, Du B, Liu D W, Kita T. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. Journal of Solid State Chemistry, 2009, 182(11): 3138–3142
CrossRef Google scholar
[90]
Barth J, Schoop M, Gloskovskii A, Shkabko A, Weidenkaff A, Felser C. Investigation of the thermoelectric properties of the series TiCo1-xNixSnxSb1-x. Zeitschrift fur Anorganische und Allgemeine Chemie, 2010, 636(1): 132–136
CrossRef Google scholar
[91]
Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G P, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165
CrossRef Google scholar
[92]
Culp S, Poon S, Hickman N, Tritt T M, Blumm J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800°C. Applied Physics Letters, 2006, 88(4): 042106
CrossRef Google scholar
[93]
Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chemical Communications (Cambridge), 2010, 46(44): 8311–8324
CrossRef Pubmed Google scholar
[94]
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935
CrossRef Google scholar
[95]
El-Genk M S, Saber H H, Caillat T. Efficient segmented thermoelectric unicouples for space power applications. Energy Conversion and Management, 2003, 44(11): 1755–1772
CrossRef Google scholar
[96]
Mayer P, Ram R. Thin-film thermoelectric generator element characterization. In: Proceedings of 24th International Conference on Thermoelectrics, ICT 2005. Clemson, SC, USA 2005, 280–283
[97]
Kim I H. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Materials Letters, 2000, 43(5–6): 221–224
CrossRef Google scholar
[98]
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114
CrossRef Pubmed Google scholar
[99]
Matsubara K. Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. In: Proceedings ICT’02. 2003, 418–423
[100]
Lange R G, Carroll W P. Review of recent advances of radioisotope power systems. Energy Conversion and Management, 2008, 49(3): 393–401
CrossRef Google scholar
[101]
Amatya R, Ram R. Solar Thermoelectric Generator for Micropower Applications. Journal of Electronic Materials, 2010, 39(9): 1735–1740
CrossRef Google scholar
[102]
Xie M, Gruen D M. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies. Journal of Physical Chemistry B, 2010, 114(45): 14339–14342
CrossRef Pubmed Google scholar
[103]
Goldsmid H. Electronic refrigeration, London: Pion Limited, 1986, 227
[104]
Redus R H, Huber A C, Pantazis J A. Improved thermoelectrically cooled X-ray detectors and electronics. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1–2): 214–219
CrossRef Google scholar
[105]
Bale G, Holland A, Seller P, Lowe B. Cooled CdZnTe detectors for X-ray astronomy. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1–2): 150–154
CrossRef Google scholar
[106]
Huebener R P, Tsuei C C. Prospects for Peltier cooling of superconducting electronics. Cryogenics, 1998, 38(3): 325–328
CrossRef Google scholar
[107]
Bojić M, Savanović G, Trifunović N, Radović L, Šaljić D. Thermoelectric cooling of a train carriage by using a coldness-recovery device. Energy, 1997, 22(5): 493–500
CrossRef Google scholar
[108]
Morrow R C, Crabb T M. Biomass Production System (BPS) plant growth unit. Advances in Space Research, 2000, 26(2): 289–298
CrossRef Pubmed Google scholar

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 50802101).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(563 KB)

Accesses

Citations

Detail

Sections
Recommended

/