Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries
Received date: 26 Oct 2017
Accepted date: 29 Dec 2017
Published date: 04 Jun 2018
Copyright
Direct integration of lithium-ion battery (LIB) with electronic devices on the same Si substrate can significantly miniaturize autonomous micro systems. For achieving direct integration, a barrier layer is essential to be inserted between LIB and the substrate for blocking Li+ diffusion. In this paper, the feasibility of thermal SiO2 film as the barrier layer is investigated by electrochemical characterization and X-ray photoelectron spectroscopy (XPS). Due to the negligible side reactions of thermal SiO2 with electrolyte, the solid electrolyte interphase (SEI) layer formed on the surface of the barrier layer is thin and the SEI content mainly consists of hydrocarbon together with slight polyethylene oxide (PEO), LixPOyFz, and Li2CO3. Although 8-nm thermal SiO2 effectively prevents the substrate from alloying with Li+, the whole film changes to Li silicate after electrochemical cycling due to the irreversible chemical reactions of SiO2 with electrolyte. This degrades the performance of the barrier layer against the electrolyte penetration, thus leading to the existence of Li+ (in the form of F-Si-Li) and solvent decompositions (with the products of hydrocarbon and PEO) near the barrier layer/substrate interface. Moreover, it is found that the reaction kinetics of thermal SiO2 with electrolyte decrease significantly with increasing the SiO2 thickness and no reactions are found in the bulk of the 30-nm SiO2 film. Therefore, thermal SiO2 with an appropriate thickness is a promising barrier layer for direct integration.
X. D. HUANG , X. F. GAN , Q. A. HUANG , J. Z. YANG . Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries[J]. Frontiers in Energy, 2018 , 12(2) : 225 -232 . DOI: 10.1007/s11708-018-0556-0
1 |
Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng Z D, Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: a review. Journal of Power Sources, 2015, 286(14): 330–345
|
2 |
Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X. Atomic layer deposition of lithium tantalate solid-state electrolytes. Journal of Physical Chemistry C, 2013, 117(39): 20260–20267
|
3 |
Janski R, Fugger M, Sternad M, Wilkening M. Lithium distribution in monocrystalline silicon-based lithium-ion batteries. ECS Transactions, 2014, 62(1): 247–253
|
4 |
Baggetto L, Oudenhoven J F M, Van Dongen T, Klootwijk J H, Mulder M, Niessen R A H, de Croon M H J M, Notten P H L. On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. Journal of Power Sources, 2009, 189(1): 402–410
|
5 |
Knoops H C M, Baggetto L, Langereis E, van de Sanden M C M, Klootwijk J H, Roozeboom F, Niessen R A H, Notten P H L, Kessels W M M. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society, 2008, 155(12): G287–G294
|
6 |
Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Advanced Functional Materials, 2008, 18(7): 1057–1066
|
7 |
Huang X D, Huang J Q, Qin M, Huang Q A. A fully integrated capacitive pressure sensor with high sensitivity. In: 6th IEEE Conference on SENSORS (IEEE SENSORS 2007), Atlanta, United States, 2007, 1052–1055
|
8 |
Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
|
9 |
Streetman B G, Banerjee S K. Solid State Electronic Devices, 6th ed.New Jersey: Prentice Hall, 2007
|
10 |
Roozeboom F, Elfrink R, Verhoeven J, Van den Meerakher J, Holthuysen F. High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectronic Engineering, 2000, 53(1–4): 581–584
|
11 |
Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
|
12 |
Sim S, Oh P, Park S, Cho J. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Advanced Materials, 2013, 25(32): 4498–4503
|
13 |
Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
|
14 |
Liu B, Soares P, Checkles C, Zhao Y, Yu G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419
|
15 |
Luais E, Ghamouss F, Wolfman J, Desplobain S, Gautier G, Tran-Van F, Sakai J. Mesoporous silicon negative electrode for thin film lithium-ion microbatteries. Journal of Power Sources, 2015, 274: 693–700
|
16 |
Takezawa H, Iwamoto K, Ito S, Yoshizawa H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. Journal of Power Sources, 2013, 244(6): 149–157
|
17 |
Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. Journal of Physical Chemistry C, 2014, 118(14): 7357–7362
|
18 |
Zhang Y, Li Y, Wang Z, Zhao K. Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Letters, 2014, 14(12): 7161–7170
|
19 |
Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. Journal of the Electrochemical Society, 2005, 152(10): A2089–A2091
|
20 |
Chan C K, Ruffo R, Hong S S, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132–1140
|
21 |
Arreaga-Salas D E, Sra A K, Roodenko K, Chabal Y J, Hinkle C L. Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries. Journal of Physical Chemistry C, 2012, 116(16): 9072–9077
|
22 |
Ensling D, Stjerndahl M, Nytén A, Gustafsson T, Thomas J O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes. Journal of Materials Chemistry, 2009, 19(1): 82–88
|
/
〈 | 〉 |