Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries

X. D. HUANG, X. F. GAN, Q. A. HUANG, J. Z. YANG

PDF(384 KB)
PDF(384 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (2) : 225-232. DOI: 10.1007/s11708-018-0556-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries

Author information +
History +

Abstract

Direct integration of lithium-ion battery (LIB) with electronic devices on the same Si substrate can significantly miniaturize autonomous micro systems. For achieving direct integration, a barrier layer is essential to be inserted between LIB and the substrate for blocking Li+ diffusion. In this paper, the feasibility of thermal SiO2 film as the barrier layer is investigated by electrochemical characterization and X-ray photoelectron spectroscopy (XPS). Due to the negligible side reactions of thermal SiO2 with electrolyte, the solid electrolyte interphase (SEI) layer formed on the surface of the barrier layer is thin and the SEI content mainly consists of hydrocarbon together with slight polyethylene oxide (PEO), LixPOyFz, and Li2CO3. Although 8-nm thermal SiO2 effectively prevents the substrate from alloying with Li+, the whole film changes to Li silicate after electrochemical cycling due to the irreversible chemical reactions of SiO2 with electrolyte. This degrades the performance of the barrier layer against the electrolyte penetration, thus leading to the existence of Li+ (in the form of F-Si-Li) and solvent decompositions (with the products of hydrocarbon and PEO) near the barrier layer/substrate interface. Moreover, it is found that the reaction kinetics of thermal SiO2 with electrolyte decrease significantly with increasing the SiO2 thickness and no reactions are found in the bulk of the 30-nm SiO2 film. Therefore, thermal SiO2 with an appropriate thickness is a promising barrier layer for direct integration.

Keywords

autonomous micro system / direct integration / barrier layer / thermal SiO2 film / X-ray photoelectron spectroscopy (XPS)

Cite this article

Download citation ▾
X. D. HUANG, X. F. GAN, Q. A. HUANG, J. Z. YANG. Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries. Front. Energy, 2018, 12(2): 225‒232 https://doi.org/10.1007/s11708-018-0556-0

References

[1]
Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng Z D, Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: a review. Journal of Power Sources, 2015, 286(14): 330–345
CrossRef Google scholar
[2]
Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X. Atomic layer deposition of lithium tantalate solid-state electrolytes. Journal of Physical Chemistry C, 2013, 117(39): 20260–20267
CrossRef Google scholar
[3]
Janski R, Fugger M, Sternad M, Wilkening M. Lithium distribution in monocrystalline silicon-based lithium-ion batteries. ECS Transactions, 2014, 62(1): 247–253
CrossRef Google scholar
[4]
Baggetto L, Oudenhoven J F M, Van Dongen T, Klootwijk J H, Mulder M, Niessen R A H, de Croon M H J M, Notten P H L. On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. Journal of Power Sources, 2009, 189(1): 402–410
CrossRef Google scholar
[5]
Knoops H C M, Baggetto L, Langereis E, van de Sanden M C M, Klootwijk J H, Roozeboom F, Niessen R A H, Notten P H L, Kessels W M M. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society, 2008, 155(12): G287–G294
CrossRef Google scholar
[6]
Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Advanced Functional Materials, 2008, 18(7): 1057–1066
CrossRef Google scholar
[7]
Huang X D, Huang J Q, Qin M, Huang Q A. A fully integrated capacitive pressure sensor with high sensitivity. In: 6th IEEE Conference on SENSORS (IEEE SENSORS 2007), Atlanta, United States, 2007, 1052–1055
[8]
Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
CrossRef Pubmed Google scholar
[9]
Streetman B G, Banerjee S K. Solid State Electronic Devices, 6th ed.New Jersey: Prentice Hall, 2007
[10]
Roozeboom F, Elfrink R, Verhoeven J, Van den Meerakher J, Holthuysen F. High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectronic Engineering, 2000, 53(1–4): 581–584
CrossRef Google scholar
[11]
Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
CrossRef Pubmed Google scholar
[12]
Sim S, Oh P, Park S, Cho J. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Advanced Materials, 2013, 25(32): 4498–4503
CrossRef Pubmed Google scholar
[13]
Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
CrossRef Pubmed Google scholar
[14]
Liu B, Soares P, Checkles C, Zhao Y, Yu G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419
CrossRef Pubmed Google scholar
[15]
Luais E, Ghamouss F, Wolfman J, Desplobain S, Gautier G, Tran-Van F, Sakai J. Mesoporous silicon negative electrode for thin film lithium-ion microbatteries. Journal of Power Sources, 2015, 274: 693–700
CrossRef Google scholar
[16]
Takezawa H, Iwamoto K, Ito S, Yoshizawa H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. Journal of Power Sources, 2013, 244(6): 149–157
CrossRef Google scholar
[17]
Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. Journal of Physical Chemistry C, 2014, 118(14): 7357–7362
CrossRef Google scholar
[18]
Zhang Y, Li Y, Wang Z, Zhao K. Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Letters, 2014, 14(12): 7161–7170
CrossRef Pubmed Google scholar
[19]
Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. Journal of the Electrochemical Society, 2005, 152(10): A2089–A2091
CrossRef Google scholar
[20]
Chan C K, Ruffo R, Hong S S, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132–1140
CrossRef Google scholar
[21]
Arreaga-Salas D E, Sra A K, Roodenko K, Chabal Y J, Hinkle C L. Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries. Journal of Physical Chemistry C, 2012, 116(16): 9072–9077
CrossRef Google scholar
[22]
Ensling D, Stjerndahl M, Nytén A, Gustafsson T, Thomas J O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes. Journal of Materials Chemistry, 2009, 19(1): 82–88
CrossRef Google scholar

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140639) and the National Natural Science Foundation of China (Grant No. 21206076).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(384 KB)

Accesses

Citations

Detail

Sections
Recommended

/