Nanostructural thermoelectric materials and their performance
Received date: 17 Aug 2017
Accepted date: 12 Nov 2017
Published date: 08 Mar 2018
Copyright
In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.
Kai-Xuan CHEN , Min-Shan LI , Dong-Chuan MO , Shu-Shen LYU . Nanostructural thermoelectric materials and their performance[J]. Frontiers in Energy, 2018 , 12(1) : 97 -108 . DOI: 10.1007/s11708-018-0543-5
1 |
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114
|
2 |
Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 2012, 5(1): 5147–5162
|
3 |
Tan G, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123–12149
|
4 |
Zhao D L, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24
|
5 |
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935
|
6 |
Ma W, Zhang X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. International Journal of Heat and Mass Transfer, 2013, 58(1–2): 639–651
|
7 |
Zhang Y, Wang Y, Huang C, Lin G, Chen J. Thermoelectric performance and optimization of three-terminal quantum dot nano-devices. Energy, 2016, 95: 593–601
|
8 |
Zhang Y, Huang C, Wang J, Lin G, Chen J. Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device. Energy, 2015, 85: 200–207
|
9 |
Page A, Van der Ven A, Poudeu P F P, Uher C. Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13949–13956
|
10 |
Sellitto A, Cimmelli V A, Jou D. Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. International Journal of Heat and Mass Transfer, 2013, 57(1): 109–116
|
11 |
Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351(6269): 141–144
|
12 |
Mi X Y, Yu X, Yao K L, Huang X, Yang N, Lü J T. Enhancing the thermoelectric figure of merit by low-dimensional electrical transport in phonon-glass crystals. Nano Letters, 2015, 15(8): 5229–5234
|
13 |
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634
|
14 |
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(19): 12727–12731
|
15 |
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
|
16 |
Goldsmid H J, Douglas R W. The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386–390
|
17 |
Wright D A. Thermoelectric properties of bismuth telluride and its alloys. Nature, 1958, 181(4612): 834
|
18 |
Bergvall P, Beckman O. Thermoelectric properties of non-stoichiometric bismuth-antimony-telluride alloys. Solid-State Electronics, 1963, 6(2): 133–136
|
19 |
Champness C H, Chiang P T, Parekh P. Thermoelectric properties of Bi2Te3-Sb2Te3 alloys. Canadian Journal of Physics, 1965, 43(4): 653–669
|
20 |
Yim W M, Rosi F D. Compound tellurides and their alloys for peltier cooling—a review. Solid-State Electronics, 1972, 15(10): 1121–1140
|
21 |
Sugihara S, Suzuki H, Kawashima S, Fujita M, Kajikawa N, Shiraishi K, Sekine R. Thermoelectric properties and electronic structures for impurity-doped Bi2Te3. In: Proceedings of the 1998 17th International Conference on Thermoelectrics. Nagoya, Japan, 1998, 59–63
|
22 |
Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024–1027
|
23 |
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428
|
24 |
Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351
|
25 |
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
|
26 |
Fan S, Zhao J, Guo J, Yan Q, Ma J, Hng H H. p-Type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Applied Physics Letters, 2010, 96(18): 182104
|
27 |
Chen S, Logothetis N, Ye L, Liu J. A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material. Materials Today: Proceedings, 2015, 2(2): 610–619
|
28 |
Caillat T, Fleurial J P, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119–1125
|
29 |
Jang K W, Kim I H, Lee J I, Choi G S. Thermoelectric properties of Zn4−xSb3 with x = 0–0.5. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena, 2007, 124–126: 1019–1022
|
30 |
Liu Y B, Zhou S M, Yuan X Y, Lou S Y, Gao T, Shi X J, Wu X P. Synthesis and high-performance thermoelectric properties of beta-Zn4Sb3 nanowires. Materials Letters, 2012, 84: 116–119
|
31 |
Zou T, Qin X, Zhang Y, Li X, Zeng Z, Li D, Zhang J, Xin H, Xie W, Weidenkaff A. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5(1): 17803
|
32 |
Loffe A F. Semiconductor Thermoelements and Thermoelectric Cooling.London: Infosearch, Ltd, 1957
|
33 |
Fritts R W. Lead telluride alloys and junctions. In: Cadoff I B, Miller E, eds. Thermoelectric Materials and Devices. New York: Reinhold Publishing Corporation, 1960, 143–162
|
34 |
Mahan G D. Good thermoelectrics. Solid State Physics, 1998, 51: 81–157
|
35 |
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104
|
36 |
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557
|
37 |
Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414–418
|
38 |
Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy & Environmental Science, 2015, 8(7): 2056–2068
|
39 |
Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J, Pei Y. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768
|
40 |
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. Journal of Applied Physics, 1964, 35(10): 2899–2907
|
41 |
Fleurial J P, Vandersande J, Scoville N, Bajgar C, Beaty J. Progress in the optimization of n-type and p-type SiGe thermoelectric materials. AIP Conference Proceedings, 1993, 271: 759–764
|
42 |
Kleint C A, Heinrich A, Muehl T, Hecker J. Structural properties of strain symmetrized silicon/germanium (111) superlattices. In: IEEE International Symposium on Circuits and Systems (ISCAS 2001). Sydney, NSW, Australia, 2001, Z8131–Z8136
|
43 |
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
|
44 |
Bathula S, Jayasimhadri M, Gahtori B, Singh N K, Tyagi K, Srivastava A K, Dhar A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale, 2015, 7(29): 12474–12483
|
45 |
Polvani D A, Meng J F, Chandra Shekar N V, Sharp J, Badding J V. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chemistry of Materials, 2001, 13(6): 2068–2071
|
46 |
Sidorenko N A, Ivanova L D. Bi-Sb solid solutions: potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorganic Materials, 2001, 37(4): 331–335
|
47 |
Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters, 2005, 86(6): 062111
|
48 |
Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90(1): 012102
|
49 |
Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106
|
50 |
Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren Z F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9): 3373–3378
|
51 |
Zhang G, Kirk B, Jauregui L A, Yang H, Xu X, Chen Y P, Wu Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Letters, 2012, 12(1): 56–60
|
52 |
Guo Q, Chan M, Kuropatwa B A, Kleinke H. Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6. Chemistry of Materials, 2013, 25(20): 4097–4104
|
53 |
Hong M, Chen Z G, Yang L, Zou J. BixSb2−xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144–155
|
54 |
Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Materials, 2016, 8(6): e275
|
55 |
Dharmaiah P, Kim H S, Lee C H, Hong S J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds, 2016, 686: 1–8
|
56 |
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821
|
57 |
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104
|
58 |
Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, Kanatzidis M G. Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society, 2011, 133(10): 3460–3470
|
59 |
Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66–69
|
60 |
Zhang Q, Yang S, Zhang Q, Chen S, Liu W, Wang H, Tian Z, Broido D, Chen G, Ren Z. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705
|
61 |
Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder G J, Stucky G D. Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165
|
62 |
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373–377
|
63 |
Sevinçli H, Sevik C, Çağın T, Cuniberti G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3(1): 1228
|
64 |
Yamini S A, Wang H, Ginting D, Mitchell D R, Dou S X, Snyder G J. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483
|
65 |
Lu Z W, Li J Q, Wang C Y, Li Y, Liu F S, Ao W Q. Effects of Mn substitution on the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. Journal of Alloys and Compounds, 2015, 621: 345–350
|
66 |
Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis M G. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 2016, 138(7): 2366–2373
|
67 |
Li J C, Li D, Qin X Y, Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126: 6–10
|
68 |
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171
|
69 |
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167
|
70 |
Miao L, Tanemura S, Huang R, Liu C Y, Huang C M, Xu G. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Applied Materials & Interfaces, 2010, 2(8): 2355–2359
|
71 |
Li Z, Chen Y, Li J F, Chen H, Wang L, Zheng S, Lu G. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy, 2016, 28: 78–86
|
72 |
Yang L, Yang N, Li B. Thermoelectric properties of nanoscale three dimensional Si phononic crystals. International Journal of Heat and Mass Transfer, 2016, 99: 102–106
|
73 |
He D, Zhao W, Mu X, Zhou H, Wei P, Zhu W, Nie X, Su X, Liu H, He J, Zhang Q. Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725: 1297–1303
|
74 |
Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251
|
75 |
Pei Y, Lensch-Falk J, Toberer E S, Medlin D L, Snyder G J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241–249
|
76 |
Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36–46
|
77 |
Ahmad S, Singh A, Bohra A, Basu R, Bhattacharya S, Bhatt R, Meshram K N, Roy M, Sarkar S K, Hayakawa Y, Debnath A K, Aswal D K, Gupta S K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 2016, 27: 282–297
|
78 |
Kim G H, Hwang D H, Woo S I. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Physical Chemistry Chemical Physics, 2012, 14(10): 3530–3536
|
79 |
Tan X J, Liu H J, Wen Y W, Lv H Y, Pan L, Shi J, Tang X F. Thermoelectric properties of ultrasmall single-wall carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(44): 21996–22001
|
80 |
Ouyang T, Xiao H P, Xie Y E, Wei X L, Chen Y P, Zhong J X. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions. Journal of Applied Physics, 2013, 114(7): 073710
|
81 |
Wang C, Ouyang T, Chen Y, Zhou B, Zhong J. Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots. Journal of Physics. D, Applied Physics, 2016, 49(13): 135303
|
82 |
Yang D, Lu C, Yin H, Herman I P. Thermoelectric performance of PbSe quantum dot films. Nanoscale, 2013, 5(16): 7290–7296
|
83 |
Guo R Q, Wang X J, Kuang Y D, Huang B L. First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(11): 115202
|
84 |
Chen Z G, Han G, Yang L, Cheng L, Zou J. Nanostructured thermoelectric materials: current research and future challenge. Progress in Natural Science: Materials International, 2012, 22(6): 535–549
|
85 |
Ginting D, Lin C C, Rathnam L, Yun J H, Yu B K, Kim S J, Rhyee J S. High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in n-type (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13535–13543
|
86 |
Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y, He X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy, 2017, 36: 156–165
|
87 |
Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Physical Review B: Condensed Matter and Materials Physics, 2000, 61(4): 2651–2656
|
88 |
Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14): 2056–2058
|
89 |
Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404
|
90 |
Turney J E, Landry E S, McGaughey A J H, Amon C H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(6): 064301
|
91 |
Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758
|
92 |
Jiang J W, Wang J S, Li B W. A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes. Journal of Applied Physics, 2011, 109(1): 014326
|
93 |
Chen K X, Wang X M, Mo D C, Lyu S S. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. Journal of Physical Chemistry C, 2015, 119(47): 26706–26711
|
94 |
Chen K X, Lyu S H, Wang X M, Fu Y X, Heng Y, Mo D C. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study. Journal of Physical Chemistry C, 2017, 121(24): 13035–13042
|
95 |
Fan D D, Liu H J, Cheng L, Jiang P H, Shi J, Tang X F. MoS2 nanoribbons as promising thermoelectric materials. Applied Physics Letters, 2014, 105(13): 133113
|
96 |
Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 2014, 4(1): 6452
|
97 |
Wang X M, Lu S S. Thermoelectric transport in graphyne nanotubes. Journal of Physical Chemistry C, 2013, 117(38): 19740–19745
|
98 |
Chen K X, Luo Z Y, Mo D C, Lyu S S. WSe2 nanoribbons: new high-performance thermoelectric materials. Physical Chemistry Chemical Physics, 2016, 18(24): 16337–16344
|
99 |
He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25
|
100 |
Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87(10): 3131–3136
|
101 |
Wang L. Thermopower and thermoconductance properties of zigzag edged graphene nanoribbon based thermoelectric module. Physics Letters, 2013, 377(21–22): 1486–1490
|
102 |
Sevinçli H, Cuniberti G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(11): 113401
|
103 |
Chang P H, Nikolić B K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 041406
|
104 |
Yeo P S E, Sullivan M B, Loh K P, Gan C K. First-principles study of the thermoelectric properties of strained graphene nanoribbons. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(36): 10762–10767
|
105 |
Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892
|
106 |
Avery A D, Zhou B H, Lee J, Lee E S, Miller E M, Ihly R, Wesenberg D, Mistry K S, Guillot S L, Zink B L, Kim Y H, Blackburn J L, Ferguson A J. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nature Energy, 2016, 1(4): 16033
|
107 |
Hsin C L, Wingert M, Huang C W, Guo H, Shih T J, Suh J, Wang K, Wu J, Wu W W, Chen R. Phase transformation and thermoelectric properties of bismuth-telluride nanowires. Nanoscale, 2013, 5(11): 4669–4672
|
108 |
Jiang J W, Wang J S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. Journal of Applied Physics, 2011, 110(12): 124319
|
109 |
Si H G, Wang Y X, Yan Y L, Zhang G B. Structural, electronic, and thermoelectric properties of InSe nanotubes: first-principles calculations. Journal of Physical Chemistry C, 2012, 116(6): 3956–3961
|
110 |
Huang W, Da H, Liang G. Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. Journal of Applied Physics, 2013, 113(10): 104304
|
111 |
Huang W, Luo X, Gan C K, Quek S Y, Liang G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Physical Chemistry Chemical Physics, 2014, 16(22): 10866–10874
|
112 |
Tahir M, Schwingenschlögl U. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides. New Journal of Physics, 2014, 16(11): 115003
|
113 |
Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Journal of Chemical Physics, 2014, 140(12): 124710
|
114 |
Lee C, Hong J, Whangbo M H, Shim J H. Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H–MQ2 (M= Mo, W; Q= S, Se, Te) by layer mixing: density functional investigation. Chemistry of Materials, 2013, 25(18): 3745–3752
|
115 |
Bhattacharyya S, Pandey T, Singh A K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology, 2014, 25(46): 465701
|
116 |
Guo S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(39): 9366–9374
|
117 |
Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method. Journal of Chemical Physics, 2013, 138(20): 204704
|
118 |
Yang K, Cahangirov S, Cantarero A, Rubio A, D’Agosta R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(12): 125403
|
119 |
Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399
|
120 |
Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433
|
121 |
Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G, Cuniberti G. Anisotropic thermoelectric response in two-dimensional puckered structures. Journal of Physical Chemistry C, 2016, 120(33): 18841–18849
|
122 |
Carrete J, Mingo N, Tian G, Ågren H, Baev A, Prasad P N. Thermoelectric properties of hybrid organic-inorganic superlattices. Journal of Physical Chemistry C, 2012, 116(20): 10881–10886
|
123 |
Savelli G, Silveira Stein S, Bernard-Granger G, Faucherand P, Montès L, Dilhaire S, Pernot G. Titanium-based silicide quantum dot superlattices for thermoelectrics applications. Nanotechnology, 2015, 26(27): 275605
|
124 |
Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y. High thermoelectric power factor in graphene/hBN devices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14272–14276
|
125 |
Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X=S, Se). Nano Energy, 2017, 32: 80–87
|
126 |
Yin K, Su X, Yan Y, Tang H, Kanatzidis M G, Uher C, Tang X. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites. Scripta Materialia, 2017, 126: 1–5
|
/
〈 | 〉 |