REVIEW ARTICLE

Nanostructural thermoelectric materials and their performance

  • Kai-Xuan CHEN ,
  • Min-Shan LI ,
  • Dong-Chuan MO ,
  • Shu-Shen LYU
Expand
  • School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Guangzhou 510275, China

Received date: 17 Aug 2017

Accepted date: 12 Nov 2017

Published date: 08 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.

Cite this article

Kai-Xuan CHEN , Min-Shan LI , Dong-Chuan MO , Shu-Shen LYU . Nanostructural thermoelectric materials and their performance[J]. Frontiers in Energy, 2018 , 12(1) : 97 -108 . DOI: 10.1007/s11708-018-0543-5

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant No. 51676212) and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.
1
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114

DOI PMID

2
Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 2012, 5(1): 5147–5162

DOI

3
Tan G, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123–12149

DOI PMID

4
Zhao D L, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24

DOI

5
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935

DOI

6
Ma W, Zhang X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. International Journal of Heat and Mass Transfer, 2013, 58(1–2): 639–651

DOI

7
Zhang Y, Wang Y, Huang C, Lin G, Chen J. Thermoelectric performance and optimization of three-terminal quantum dot nano-devices. Energy, 2016, 95: 593–601

DOI

8
Zhang Y, Huang C, Wang J, Lin G, Chen J. Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device. Energy, 2015, 85: 200–207

DOI

9
Page A, Van der Ven A, Poudeu P F P, Uher C. Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13949–13956

DOI

10
Sellitto A, Cimmelli V A, Jou D. Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. International Journal of Heat and Mass Transfer, 2013, 57(1): 109–116

DOI

11
Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351(6269): 141–144

DOI PMID

12
Mi X Y, Yu X, Yao K L, Huang X, Yang N, Lü J T. Enhancing the thermoelectric figure of merit by low-dimensional electrical transport in phonon-glass crystals. Nano Letters, 2015, 15(8): 5229–5234

DOI PMID

13
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634

DOI PMID

14
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(19): 12727–12731

DOI PMID

15
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

DOI PMID

16
Goldsmid H J, Douglas R W. The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386–390

DOI

17
Wright D A. Thermoelectric properties of bismuth telluride and its alloys. Nature, 1958, 181(4612): 834

DOI

18
Bergvall P, Beckman O. Thermoelectric properties of non-stoichiometric bismuth-antimony-telluride alloys. Solid-State Electronics, 1963, 6(2): 133–136

DOI

19
Champness C H, Chiang P T, Parekh P. Thermoelectric properties of Bi2Te3-Sb2Te3 alloys. Canadian Journal of Physics, 1965, 43(4): 653–669

DOI

20
Yim W M, Rosi F D. Compound tellurides and their alloys for peltier cooling—a review. Solid-State Electronics, 1972, 15(10): 1121–1140

DOI

21
Sugihara S, Suzuki H, Kawashima S, Fujita M, Kajikawa N, Shiraishi K, Sekine R. Thermoelectric properties and electronic structures for impurity-doped Bi2Te3. In: Proceedings of the 1998 17th International Conference on Thermoelectrics. Nagoya, Japan, 1998, 59–63

22
Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024–1027

DOI PMID

23
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428

DOI PMID

24
Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351

DOI

25
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

DOI PMID

26
Fan S, Zhao J, Guo J, Yan Q, Ma J, Hng H H. p-Type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Applied Physics Letters, 2010, 96(18): 182104

DOI

27
Chen S, Logothetis N, Ye L, Liu J. A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material. Materials Today: Proceedings, 2015, 2(2): 610–619

DOI

28
Caillat T, Fleurial J P, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119–1125

DOI

29
Jang K W, Kim I H, Lee J I, Choi G S. Thermoelectric properties of Zn4−xSb3 with x = 0–0.5. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena, 2007, 124–126: 1019–1022

DOI

30
Liu Y B, Zhou S M, Yuan X Y, Lou S Y, Gao T, Shi X J, Wu X P. Synthesis and high-performance thermoelectric properties of beta-Zn4Sb3 nanowires. Materials Letters, 2012, 84: 116–119

DOI

31
Zou T, Qin X, Zhang Y, Li X, Zeng Z, Li D, Zhang J, Xin H, Xie W, Weidenkaff A. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5(1): 17803

DOI PMID

32
Loffe A F. Semiconductor Thermoelements and Thermoelectric Cooling.London: Infosearch, Ltd, 1957

33
Fritts R W. Lead telluride alloys and junctions. In: Cadoff I B, Miller E, eds. Thermoelectric Materials and Devices. New York: Reinhold Publishing Corporation, 1960, 143–162

34
Mahan G D. Good thermoelectrics. Solid State Physics, 1998, 51: 81–157

DOI

35
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104

DOI

36
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557

DOI PMID

37
Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414–418

DOI PMID

38
Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy & Environmental Science, 2015, 8(7): 2056–2068

DOI

39
Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J, Pei Y. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768

DOI PMID

40
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. Journal of Applied Physics, 1964, 35(10): 2899–2907

DOI

41
Fleurial J P, Vandersande J, Scoville N, Bajgar C, Beaty J. Progress in the optimization of n-type and p-type SiGe thermoelectric materials. AIP Conference Proceedings, 1993, 271: 759–764

DOI

42
Kleint C A, Heinrich A, Muehl T, Hecker J. Structural properties of strain symmetrized silicon/germanium (111) superlattices. In: IEEE International Symposium on Circuits and Systems (ISCAS 2001). Sydney, NSW, Australia, 2001, Z8131–Z8136

43
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674

DOI PMID

44
Bathula S, Jayasimhadri M, Gahtori B, Singh N K, Tyagi K, Srivastava A K, Dhar A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale, 2015, 7(29): 12474–12483

DOI PMID

45
Polvani D A, Meng J F, Chandra Shekar N V, Sharp J, Badding J V. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chemistry of Materials, 2001, 13(6): 2068–2071

DOI

46
Sidorenko N A, Ivanova L D. Bi-Sb solid solutions: potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorganic Materials, 2001, 37(4): 331–335

DOI

47
Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters, 2005, 86(6): 062111

DOI

48
Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90(1): 012102

DOI

49
Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106

DOI

50
Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren Z F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9): 3373–3378

DOI PMID

51
Zhang G, Kirk B, Jauregui L A, Yang H, Xu X, Chen Y P, Wu Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Letters, 2012, 12(1): 56–60

DOI PMID

52
Guo Q, Chan M, Kuropatwa B A, Kleinke H. Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6. Chemistry of Materials, 2013, 25(20): 4097–4104

DOI

53
Hong M, Chen Z G, Yang L, Zou J. BixSb2−xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144–155

DOI

54
Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Materials, 2016, 8(6): e275

DOI

55
Dharmaiah P, Kim H S, Lee C H, Hong S J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds, 2016, 686: 1–8

DOI

56
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821

DOI PMID

57
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104

DOI

58
Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, Kanatzidis M G. Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society, 2011, 133(10): 3460–3470

DOI PMID

59
Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66–69

DOI PMID

60
Zhang Q, Yang S, Zhang Q, Chen S, Liu W, Wang H, Tian Z, Broido D, Chen G, Ren Z. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705

DOI PMID

61
Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder G J, Stucky G D. Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165

DOI PMID

62
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373–377

DOI PMID

63
Sevinçli H, Sevik C, Çağın T, Cuniberti G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3(1): 1228

DOI PMID

64
Yamini S A, Wang H, Ginting D, Mitchell D R, Dou S X, Snyder G J. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483

DOI PMID

65
Lu Z W, Li J Q, Wang C Y, Li Y, Liu F S, Ao W Q. Effects of Mn substitution on the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. Journal of Alloys and Compounds, 2015, 621: 345–350

DOI

66
Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis M G. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 2016, 138(7): 2366–2373

DOI PMID

67
Li J C, Li D, Qin X Y, Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126: 6–10

DOI

68
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171

DOI PMID

69
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167

DOI PMID

70
Miao L, Tanemura S, Huang R, Liu C Y, Huang C M, Xu G. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Applied Materials & Interfaces, 2010, 2(8): 2355–2359

DOI PMID

71
Li Z, Chen Y, Li J F, Chen H, Wang L, Zheng S, Lu G. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy, 2016, 28: 78–86

DOI

72
Yang L, Yang N, Li B. Thermoelectric properties of nanoscale three dimensional Si phononic crystals. International Journal of Heat and Mass Transfer, 2016, 99: 102–106

DOI

73
He D, Zhao W, Mu X, Zhou H, Wei P, Zhu W, Nie X, Su X, Liu H, He J, Zhang Q. Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725: 1297–1303

DOI

74
Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251

DOI PMID

75
Pei Y, Lensch-Falk J, Toberer E S, Medlin D L, Snyder G J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241–249

DOI

76
Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36–46

DOI

77
Ahmad S, Singh A, Bohra A, Basu R, Bhattacharya S, Bhatt R, Meshram K N, Roy M, Sarkar S K, Hayakawa Y, Debnath A K, Aswal D K, Gupta S K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 2016, 27: 282–297

DOI

78
Kim G H, Hwang D H, Woo S I. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Physical Chemistry Chemical Physics, 2012, 14(10): 3530–3536

DOI PMID

79
Tan X J, Liu H J, Wen Y W, Lv H Y, Pan L, Shi J, Tang X F. Thermoelectric properties of ultrasmall single-wall carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(44): 21996–22001

DOI

80
Ouyang T, Xiao H P, Xie Y E, Wei X L, Chen Y P, Zhong J X. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions. Journal of Applied Physics, 2013, 114(7): 073710

DOI

81
Wang C, Ouyang T, Chen Y, Zhou B, Zhong J. Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots. Journal of Physics. D, Applied Physics, 2016, 49(13): 135303

DOI

82
Yang D, Lu C, Yin H, Herman I P. Thermoelectric performance of PbSe quantum dot films. Nanoscale, 2013, 5(16): 7290–7296

DOI PMID

83
Guo R Q, Wang X J, Kuang Y D, Huang B L. First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(11): 115202

DOI

84
Chen Z G, Han G, Yang L, Cheng L, Zou J. Nanostructured thermoelectric materials: current research and future challenge. Progress in Natural Science: Materials International, 2012, 22(6): 535–549

DOI

85
Ginting D, Lin C C, Rathnam L, Yun J H, Yu B K, Kim S J, Rhyee J S. High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in n-type (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13535–13543

DOI

86
Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y, He X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy, 2017, 36: 156–165

DOI

87
Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Physical Review B: Condensed Matter and Materials Physics, 2000, 61(4): 2651–2656

DOI

88
Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14): 2056–2058

DOI

89
Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404

DOI

90
Turney J E, Landry E S, McGaughey A J H, Amon C H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(6): 064301

DOI

91
Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758

DOI

92
Jiang J W, Wang J S, Li B W. A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes. Journal of Applied Physics, 2011, 109(1): 014326

DOI

93
Chen K X, Wang X M, Mo D C, Lyu S S. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. Journal of Physical Chemistry C, 2015, 119(47): 26706–26711

DOI

94
Chen K X, Lyu S H, Wang X M, Fu Y X, Heng Y, Mo D C. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study. Journal of Physical Chemistry C, 2017, 121(24): 13035–13042

DOI

95
Fan D D, Liu H J, Cheng L, Jiang P H, Shi J, Tang X F. MoS2 nanoribbons as promising thermoelectric materials. Applied Physics Letters, 2014, 105(13): 133113

DOI

96
Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 2014, 4(1): 6452

DOI PMID

97
Wang X M, Lu S S. Thermoelectric transport in graphyne nanotubes. Journal of Physical Chemistry C, 2013, 117(38): 19740–19745

DOI

98
Chen K X, Luo Z Y, Mo D C, Lyu S S. WSe2 nanoribbons: new high-performance thermoelectric materials. Physical Chemistry Chemical Physics, 2016, 18(24): 16337–16344

DOI PMID

99
He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25

DOI

100
Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87(10): 3131–3136

DOI

101
Wang L. Thermopower and thermoconductance properties of zigzag edged graphene nanoribbon based thermoelectric module. Physics Letters, 2013, 377(21–22): 1486–1490

DOI

102
Sevinçli H, Cuniberti G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(11): 113401

DOI

103
Chang P H, Nikolić B K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 041406

DOI

104
Yeo P S E, Sullivan M B, Loh K P, Gan C K. First-principles study of the thermoelectric properties of strained graphene nanoribbons. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(36): 10762–10767

DOI

105
Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892

DOI PMID

106
Avery A D, Zhou B H, Lee J, Lee E S, Miller E M, Ihly R, Wesenberg D, Mistry K S, Guillot S L, Zink B L, Kim Y H, Blackburn J L, Ferguson A J. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nature Energy, 2016, 1(4): 16033

DOI

107
Hsin C L, Wingert M, Huang C W, Guo H, Shih T J, Suh J, Wang K, Wu J, Wu W W, Chen R. Phase transformation and thermoelectric properties of bismuth-telluride nanowires. Nanoscale, 2013, 5(11): 4669–4672

DOI PMID

108
Jiang J W, Wang J S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. Journal of Applied Physics, 2011, 110(12): 124319

DOI

109
Si H G, Wang Y X, Yan Y L, Zhang G B. Structural, electronic, and thermoelectric properties of InSe nanotubes: first-principles calculations. Journal of Physical Chemistry C, 2012, 116(6): 3956–3961

DOI

110
Huang W, Da H, Liang G. Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. Journal of Applied Physics, 2013, 113(10): 104304

DOI

111
Huang W, Luo X, Gan C K, Quek S Y, Liang G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Physical Chemistry Chemical Physics, 2014, 16(22): 10866–10874

DOI PMID

112
Tahir M, Schwingenschlögl U. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides. New Journal of Physics, 2014, 16(11): 115003

DOI

113
Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Journal of Chemical Physics, 2014, 140(12): 124710

DOI PMID

114
Lee C, Hong J, Whangbo M H, Shim J H. Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H–MQ2 (M= Mo, W; Q= S, Se, Te) by layer mixing: density functional investigation. Chemistry of Materials, 2013, 25(18): 3745–3752

DOI

115
Bhattacharyya S, Pandey T, Singh A K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology, 2014, 25(46): 465701

DOI PMID

116
Guo S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(39): 9366–9374

DOI

117
Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method. Journal of Chemical Physics, 2013, 138(20): 204704

DOI PMID

118
Yang K, Cahangirov S, Cantarero A, Rubio A, D’Agosta R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(12): 125403

DOI

119
Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399

DOI PMID

120
Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433

DOI

121
Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G, Cuniberti G. Anisotropic thermoelectric response in two-dimensional puckered structures. Journal of Physical Chemistry C, 2016, 120(33): 18841–18849

DOI

122
Carrete J, Mingo N, Tian G, Ågren H, Baev A, Prasad P N. Thermoelectric properties of hybrid organic-inorganic superlattices. Journal of Physical Chemistry C, 2012, 116(20): 10881–10886

DOI

123
Savelli G, Silveira Stein S, Bernard-Granger G, Faucherand P, Montès L, Dilhaire S, Pernot G. Titanium-based silicide quantum dot superlattices for thermoelectrics applications. Nanotechnology, 2015, 26(27): 275605

DOI PMID

124
Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y. High thermoelectric power factor in graphene/hBN devices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14272–14276

DOI PMID

125
Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X=S, Se). Nano Energy, 2017, 32: 80–87

DOI

126
Yin K, Su X, Yan Y, Tang H, Kanatzidis M G, Uher C, Tang X. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites. Scripta Materialia, 2017, 126: 1–5

DOI

Outlines

/