Nanostructural thermoelectric materials and their performance

Kai-Xuan CHEN, Min-Shan LI, Dong-Chuan MO, Shu-Shen LYU

PDF(351 KB)
PDF(351 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 97-108. DOI: 10.1007/s11708-018-0543-5
REVIEW ARTICLE
REVIEW ARTICLE

Nanostructural thermoelectric materials and their performance

Author information +
History +

Abstract

In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.

Keywords

nanostructural / low-dimensional / thermoelectric material / figure of merit / first-principles

Cite this article

Download citation ▾
Kai-Xuan CHEN, Min-Shan LI, Dong-Chuan MO, Shu-Shen LYU. Nanostructural thermoelectric materials and their performance. Front. Energy, 2018, 12(1): 97‒108 https://doi.org/10.1007/s11708-018-0543-5

References

[1]
Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114
CrossRef Pubmed Google scholar
[2]
Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 2012, 5(1): 5147–5162
CrossRef Google scholar
[3]
Tan G, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123–12149
CrossRef Pubmed Google scholar
[4]
Zhao D L, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24
CrossRef Google scholar
[5]
Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935
CrossRef Google scholar
[6]
Ma W, Zhang X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. International Journal of Heat and Mass Transfer, 2013, 58(1–2): 639–651
CrossRef Google scholar
[7]
Zhang Y, Wang Y, Huang C, Lin G, Chen J. Thermoelectric performance and optimization of three-terminal quantum dot nano-devices. Energy, 2016, 95: 593–601
CrossRef Google scholar
[8]
Zhang Y, Huang C, Wang J, Lin G, Chen J. Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device. Energy, 2015, 85: 200–207
CrossRef Google scholar
[9]
Page A, Van der Ven A, Poudeu P F P, Uher C. Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13949–13956
CrossRef Google scholar
[10]
Sellitto A, Cimmelli V A, Jou D. Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. International Journal of Heat and Mass Transfer, 2013, 57(1): 109–116
CrossRef Google scholar
[11]
Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351(6269): 141–144
CrossRef Pubmed Google scholar
[12]
Mi X Y, Yu X, Yao K L, Huang X, Yang N, Lü J T. Enhancing the thermoelectric figure of merit by low-dimensional electrical transport in phonon-glass crystals. Nano Letters, 2015, 15(8): 5229–5234
CrossRef Pubmed Google scholar
[13]
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634
CrossRef Pubmed Google scholar
[14]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(19): 12727–12731
CrossRef Pubmed Google scholar
[15]
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602
CrossRef Pubmed Google scholar
[16]
Goldsmid H J, Douglas R W. The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386–390
CrossRef Google scholar
[17]
Wright D A. Thermoelectric properties of bismuth telluride and its alloys. Nature, 1958, 181(4612): 834
CrossRef Google scholar
[18]
Bergvall P, Beckman O. Thermoelectric properties of non-stoichiometric bismuth-antimony-telluride alloys. Solid-State Electronics, 1963, 6(2): 133–136
CrossRef Google scholar
[19]
Champness C H, Chiang P T, Parekh P. Thermoelectric properties of Bi2Te3-Sb2Te3 alloys. Canadian Journal of Physics, 1965, 43(4): 653–669
CrossRef Google scholar
[20]
Yim W M, Rosi F D. Compound tellurides and their alloys for peltier cooling—a review. Solid-State Electronics, 1972, 15(10): 1121–1140
CrossRef Google scholar
[21]
Sugihara S, Suzuki H, Kawashima S, Fujita M, Kajikawa N, Shiraishi K, Sekine R. Thermoelectric properties and electronic structures for impurity-doped Bi2Te3. In: Proceedings of the 1998 17th International Conference on Thermoelectrics. Nagoya, Japan, 1998, 59–63
[22]
Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024–1027
CrossRef Pubmed Google scholar
[23]
Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428
CrossRef Pubmed Google scholar
[24]
Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351
CrossRef Google scholar
[25]
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
CrossRef Pubmed Google scholar
[26]
Fan S, Zhao J, Guo J, Yan Q, Ma J, Hng H H. p-Type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Applied Physics Letters, 2010, 96(18): 182104
CrossRef Google scholar
[27]
Chen S, Logothetis N, Ye L, Liu J. A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material. Materials Today: Proceedings, 2015, 2(2): 610–619
CrossRef Google scholar
[28]
Caillat T, Fleurial J P, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119–1125
CrossRef Google scholar
[29]
Jang K W, Kim I H, Lee J I, Choi G S. Thermoelectric properties of Zn4−xSb3 with x = 0–0.5. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena, 2007, 124–126: 1019–1022
CrossRef Google scholar
[30]
Liu Y B, Zhou S M, Yuan X Y, Lou S Y, Gao T, Shi X J, Wu X P. Synthesis and high-performance thermoelectric properties of beta-Zn4Sb3 nanowires. Materials Letters, 2012, 84: 116–119
CrossRef Google scholar
[31]
Zou T, Qin X, Zhang Y, Li X, Zeng Z, Li D, Zhang J, Xin H, Xie W, Weidenkaff A. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5(1): 17803
CrossRef Pubmed Google scholar
[32]
Loffe A F. Semiconductor Thermoelements and Thermoelectric Cooling.London: Infosearch, Ltd, 1957
[33]
Fritts R W. Lead telluride alloys and junctions. In: Cadoff I B, Miller E, eds. Thermoelectric Materials and Devices. New York: Reinhold Publishing Corporation, 1960, 143–162
[34]
Mahan G D. Good thermoelectrics. Solid State Physics, 1998, 51: 81–157
CrossRef Google scholar
[35]
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104
CrossRef Google scholar
[36]
Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557
CrossRef Pubmed Google scholar
[37]
Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414–418
CrossRef Pubmed Google scholar
[38]
Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy & Environmental Science, 2015, 8(7): 2056–2068
CrossRef Google scholar
[39]
Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J, Pei Y. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768
CrossRef Pubmed Google scholar
[40]
Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. Journal of Applied Physics, 1964, 35(10): 2899–2907
CrossRef Google scholar
[41]
Fleurial J P, Vandersande J, Scoville N, Bajgar C, Beaty J. Progress in the optimization of n-type and p-type SiGe thermoelectric materials. AIP Conference Proceedings, 1993, 271: 759–764
CrossRef Google scholar
[42]
Kleint C A, Heinrich A, Muehl T, Hecker J. Structural properties of strain symmetrized silicon/germanium (111) superlattices. In: IEEE International Symposium on Circuits and Systems (ISCAS 2001). Sydney, NSW, Australia, 2001, Z8131–Z8136
[43]
Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674
CrossRef Pubmed Google scholar
[44]
Bathula S, Jayasimhadri M, Gahtori B, Singh N K, Tyagi K, Srivastava A K, Dhar A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale, 2015, 7(29): 12474–12483
CrossRef Pubmed Google scholar
[45]
Polvani D A, Meng J F, Chandra Shekar N V, Sharp J, Badding J V. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chemistry of Materials, 2001, 13(6): 2068–2071
CrossRef Google scholar
[46]
Sidorenko N A, Ivanova L D. Bi-Sb solid solutions: potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorganic Materials, 2001, 37(4): 331–335
CrossRef Google scholar
[47]
Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters, 2005, 86(6): 062111
CrossRef Google scholar
[48]
Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90(1): 012102
CrossRef Google scholar
[49]
Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106
CrossRef Google scholar
[50]
Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren Z F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9): 3373–3378
CrossRef Pubmed Google scholar
[51]
Zhang G, Kirk B, Jauregui L A, Yang H, Xu X, Chen Y P, Wu Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Letters, 2012, 12(1): 56–60
CrossRef Pubmed Google scholar
[52]
Guo Q, Chan M, Kuropatwa B A, Kleinke H. Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6. Chemistry of Materials, 2013, 25(20): 4097–4104
CrossRef Google scholar
[53]
Hong M, Chen Z G, Yang L, Zou J. BixSb2−xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144–155
CrossRef Google scholar
[54]
Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Materials, 2016, 8(6): e275
CrossRef Google scholar
[55]
Dharmaiah P, Kim H S, Lee C H, Hong S J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds, 2016, 686: 1–8
CrossRef Google scholar
[56]
Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821
CrossRef Pubmed Google scholar
[57]
Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104
CrossRef Google scholar
[58]
Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, Kanatzidis M G. Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society, 2011, 133(10): 3460–3470
CrossRef Pubmed Google scholar
[59]
Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66–69
CrossRef Pubmed Google scholar
[60]
Zhang Q, Yang S, Zhang Q, Chen S, Liu W, Wang H, Tian Z, Broido D, Chen G, Ren Z. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705
CrossRef Pubmed Google scholar
[61]
Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder G J, Stucky G D. Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165
CrossRef Pubmed Google scholar
[62]
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373–377
CrossRef Pubmed Google scholar
[63]
Sevinçli H, Sevik C, Çağın T, Cuniberti G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3(1): 1228
CrossRef Pubmed Google scholar
[64]
Yamini S A, Wang H, Ginting D, Mitchell D R, Dou S X, Snyder G J. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483
CrossRef Pubmed Google scholar
[65]
Lu Z W, Li J Q, Wang C Y, Li Y, Liu F S, Ao W Q. Effects of Mn substitution on the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. Journal of Alloys and Compounds, 2015, 621: 345–350
CrossRef Google scholar
[66]
Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis M G. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 2016, 138(7): 2366–2373
CrossRef Pubmed Google scholar
[67]
Li J C, Li D, Qin X Y, Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126: 6–10
CrossRef Google scholar
[68]
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171
CrossRef Pubmed Google scholar
[69]
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167
CrossRef Pubmed Google scholar
[70]
Miao L, Tanemura S, Huang R, Liu C Y, Huang C M, Xu G. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Applied Materials & Interfaces, 2010, 2(8): 2355–2359
CrossRef Pubmed Google scholar
[71]
Li Z, Chen Y, Li J F, Chen H, Wang L, Zheng S, Lu G. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy, 2016, 28: 78–86
CrossRef Google scholar
[72]
Yang L, Yang N, Li B. Thermoelectric properties of nanoscale three dimensional Si phononic crystals. International Journal of Heat and Mass Transfer, 2016, 99: 102–106
CrossRef Google scholar
[73]
He D, Zhao W, Mu X, Zhou H, Wei P, Zhu W, Nie X, Su X, Liu H, He J, Zhang Q. Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725: 1297–1303
CrossRef Google scholar
[74]
Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251
CrossRef Pubmed Google scholar
[75]
Pei Y, Lensch-Falk J, Toberer E S, Medlin D L, Snyder G J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241–249
CrossRef Google scholar
[76]
Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36–46
CrossRef Google scholar
[77]
Ahmad S, Singh A, Bohra A, Basu R, Bhattacharya S, Bhatt R, Meshram K N, Roy M, Sarkar S K, Hayakawa Y, Debnath A K, Aswal D K, Gupta S K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 2016, 27: 282–297
CrossRef Google scholar
[78]
Kim G H, Hwang D H, Woo S I. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Physical Chemistry Chemical Physics, 2012, 14(10): 3530–3536
CrossRef Pubmed Google scholar
[79]
Tan X J, Liu H J, Wen Y W, Lv H Y, Pan L, Shi J, Tang X F. Thermoelectric properties of ultrasmall single-wall carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(44): 21996–22001
CrossRef Google scholar
[80]
Ouyang T, Xiao H P, Xie Y E, Wei X L, Chen Y P, Zhong J X. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions. Journal of Applied Physics, 2013, 114(7): 073710
CrossRef Google scholar
[81]
Wang C, Ouyang T, Chen Y, Zhou B, Zhong J. Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond-like quantum dots. Journal of Physics. D, Applied Physics, 2016, 49(13): 135303
CrossRef Google scholar
[82]
Yang D, Lu C, Yin H, Herman I P. Thermoelectric performance of PbSe quantum dot films. Nanoscale, 2013, 5(16): 7290–7296
CrossRef Pubmed Google scholar
[83]
Guo R Q, Wang X J, Kuang Y D, Huang B L. First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(11): 115202
CrossRef Google scholar
[84]
Chen Z G, Han G, Yang L, Cheng L, Zou J. Nanostructured thermoelectric materials: current research and future challenge. Progress in Natural Science: Materials International, 2012, 22(6): 535–549
CrossRef Google scholar
[85]
Ginting D, Lin C C, Rathnam L, Yun J H, Yu B K, Kim S J, Rhyee J S. High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in n-type (PbTe0.93−xSe0.07Clx)0.93(PbS)0.07 composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13535–13543
CrossRef Google scholar
[86]
Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y, He X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy, 2017, 36: 156–165
CrossRef Google scholar
[87]
Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Physical Review B: Condensed Matter and Materials Physics, 2000, 61(4): 2651–2656
CrossRef Google scholar
[88]
Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14): 2056–2058
CrossRef Google scholar
[89]
Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404
CrossRef Google scholar
[90]
Turney J E, Landry E S, McGaughey A J H, Amon C H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(6): 064301
CrossRef Google scholar
[91]
Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758
CrossRef Google scholar
[92]
Jiang J W, Wang J S, Li B W. A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes. Journal of Applied Physics, 2011, 109(1): 014326
CrossRef Google scholar
[93]
Chen K X, Wang X M, Mo D C, Lyu S S. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. Journal of Physical Chemistry C, 2015, 119(47): 26706–26711
CrossRef Google scholar
[94]
Chen K X, Lyu S H, Wang X M, Fu Y X, Heng Y, Mo D C. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study. Journal of Physical Chemistry C, 2017, 121(24): 13035–13042
CrossRef Google scholar
[95]
Fan D D, Liu H J, Cheng L, Jiang P H, Shi J, Tang X F. MoS2 nanoribbons as promising thermoelectric materials. Applied Physics Letters, 2014, 105(13): 133113
CrossRef Google scholar
[96]
Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 2014, 4(1): 6452
CrossRef Pubmed Google scholar
[97]
Wang X M, Lu S S. Thermoelectric transport in graphyne nanotubes. Journal of Physical Chemistry C, 2013, 117(38): 19740–19745
CrossRef Google scholar
[98]
Chen K X, Luo Z Y, Mo D C, Lyu S S. WSe2 nanoribbons: new high-performance thermoelectric materials. Physical Chemistry Chemical Physics, 2016, 18(24): 16337–16344
CrossRef Pubmed Google scholar
[99]
He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25
CrossRef Google scholar
[100]
Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87(10): 3131–3136
CrossRef Google scholar
[101]
Wang L. Thermopower and thermoconductance properties of zigzag edged graphene nanoribbon based thermoelectric module. Physics Letters, 2013, 377(21–22): 1486–1490
CrossRef Google scholar
[102]
Sevinçli H, Cuniberti G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(11): 113401
CrossRef Google scholar
[103]
Chang P H, Nikolić B K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 041406
CrossRef Google scholar
[104]
Yeo P S E, Sullivan M B, Loh K P, Gan C K. First-principles study of the thermoelectric properties of strained graphene nanoribbons. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(36): 10762–10767
CrossRef Google scholar
[105]
Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892
CrossRef Pubmed Google scholar
[106]
Avery A D, Zhou B H, Lee J, Lee E S, Miller E M, Ihly R, Wesenberg D, Mistry K S, Guillot S L, Zink B L, Kim Y H, Blackburn J L, Ferguson A J. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nature Energy, 2016, 1(4): 16033
CrossRef Google scholar
[107]
Hsin C L, Wingert M, Huang C W, Guo H, Shih T J, Suh J, Wang K, Wu J, Wu W W, Chen R. Phase transformation and thermoelectric properties of bismuth-telluride nanowires. Nanoscale, 2013, 5(11): 4669–4672
CrossRef Pubmed Google scholar
[108]
Jiang J W, Wang J S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. Journal of Applied Physics, 2011, 110(12): 124319
CrossRef Google scholar
[109]
Si H G, Wang Y X, Yan Y L, Zhang G B. Structural, electronic, and thermoelectric properties of InSe nanotubes: first-principles calculations. Journal of Physical Chemistry C, 2012, 116(6): 3956–3961
CrossRef Google scholar
[110]
Huang W, Da H, Liang G. Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. Journal of Applied Physics, 2013, 113(10): 104304
CrossRef Google scholar
[111]
Huang W, Luo X, Gan C K, Quek S Y, Liang G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Physical Chemistry Chemical Physics, 2014, 16(22): 10866–10874
CrossRef Pubmed Google scholar
[112]
Tahir M, Schwingenschlögl U. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides. New Journal of Physics, 2014, 16(11): 115003
CrossRef Google scholar
[113]
Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Journal of Chemical Physics, 2014, 140(12): 124710
CrossRef Pubmed Google scholar
[114]
Lee C, Hong J, Whangbo M H, Shim J H. Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H–MQ2 (M= Mo, W; Q= S, Se, Te) by layer mixing: density functional investigation. Chemistry of Materials, 2013, 25(18): 3745–3752
CrossRef Google scholar
[115]
Bhattacharyya S, Pandey T, Singh A K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology, 2014, 25(46): 465701
CrossRef Pubmed Google scholar
[116]
Guo S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(39): 9366–9374
CrossRef Google scholar
[117]
Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method. Journal of Chemical Physics, 2013, 138(20): 204704
CrossRef Pubmed Google scholar
[118]
Yang K, Cahangirov S, Cantarero A, Rubio A, D’Agosta R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(12): 125403
CrossRef Google scholar
[119]
Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399
CrossRef Pubmed Google scholar
[120]
Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433
CrossRef Google scholar
[121]
Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G, Cuniberti G. Anisotropic thermoelectric response in two-dimensional puckered structures. Journal of Physical Chemistry C, 2016, 120(33): 18841–18849
CrossRef Google scholar
[122]
Carrete J, Mingo N, Tian G, Ågren H, Baev A, Prasad P N. Thermoelectric properties of hybrid organic-inorganic superlattices. Journal of Physical Chemistry C, 2012, 116(20): 10881–10886
CrossRef Google scholar
[123]
Savelli G, Silveira Stein S, Bernard-Granger G, Faucherand P, Montès L, Dilhaire S, Pernot G. Titanium-based silicide quantum dot superlattices for thermoelectrics applications. Nanotechnology, 2015, 26(27): 275605
CrossRef Pubmed Google scholar
[124]
Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y. High thermoelectric power factor in graphene/hBN devices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14272–14276
CrossRef Pubmed Google scholar
[125]
Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X=S, Se). Nano Energy, 2017, 32: 80–87
CrossRef Google scholar
[126]
Yin K, Su X, Yan Y, Tang H, Kanatzidis M G, Uher C, Tang X. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites. Scripta Materialia, 2017, 126: 1–5
CrossRef Google scholar

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant No. 51676212) and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(351 KB)

Accesses

Citations

Detail

Sections
Recommended

/