REVIEW ARTICLE

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

  • Amun JARZEMBSKI ,
  • Cedric SHASKEY ,
  • Keunhan PARK
Expand
  • Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA

Received date: 29 Jul 2017

Accepted date: 22 Oct 2017

Published date: 08 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

Cite this article

Amun JARZEMBSKI , Cedric SHASKEY , Keunhan PARK . Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials[J]. Frontiers in Energy, 2018 , 12(1) : 43 -71 . DOI: 10.1007/s11708-018-0524-8

Acknowledgments

This work was supported by the National Science Foundation (CBET-1605584) and the University of Utah Funding Incentive Seed Grant. A.J. also acknowledges financial supports from the University of Utah’s Sid Green Fellowship and the National Science Foundation Graduate Research Fellowship (No. 2016213209). C.S. acknowledges financial support from the University of Utah Undergraduate Research Opportunities Program (UROP).
1
Derrick M, Stulick D, Landry J. Infrared Spectroscopy in Conservation Science. Getty Conservation Institute, USA, 2000

2
Griffiths P R, de Haseth J A. Fourier Transform Infrared Spectrometry, 2nd ed. Hoboken: John Wiley and Sons, 2007

3
Bhargava R, Ribar T, Koenig J. Towards faster FT-IR imaging by reducing noise. Applied Spectroscopy, 1999, 53(11): 1313–1322

DOI

4
Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging. Weinheim: Wiley-VCH, 2009

5
Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2006, 29(2): 238–246

DOI

6
Ghashami M, Cho S K, Park K. Near-field enhanced thermionic energy conversion for renewable energy recycling. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 198: 59–67

DOI

7
Park K, Zhang Z M. Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat & Mass Transfer, 2013, 4(1): 13001

DOI

8
Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press, 2005

9
Zayats A V, Richards D. Nano-optics and Near-field Optical Microscopy. Norwood: Artech House, 2009

10
Orrit M. Nobel Prize in chemistry: celebrating optical nanoscopy. Nature Photonics, 2014, 8(12): 887–888

DOI

11
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. Morlenbach: John Wiley & Sons, 1983

12
Miller L M, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica et Biophysica Acta, 2006, 1758(7): 846–857

DOI PMID

13
Sullivan D H, Conner W C, Harold M P. Surface analysis with FT-IR emission spectroscopy. Applied Spectroscopy, 1992, 46(5): 811–818

DOI

14
Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C. THz-spectroscopy of biological molecules. Journal of Biological Physics, 2003, 29(2–3): 89–100

DOI PMID

15
Jin X Y, Kim K J, Lee H S. Grazing incidence reflection absorption Fourier transform infrared (GIRA-FTIR) spectroscopic studies on the ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) ultrathin films. Polymer, 2005, 46(26): 12410–12415

DOI

16
Schliesser A, Brehm M, Keilmann F, van der Weide D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Optics Express, 2005, 13(22): 9029–9038

DOI PMID

17
Nyga P, Drachev V P, Thoreson M D, Shalaev V M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics. B, Lasers and Optics, 2008, 93(1): 59–68

DOI

18
Yu A I T, Pusep A, Milekhin A H. FTIR spectroscopy of longitudinal confined phonons and plasmon-phonon vibrational modes in GaAsn/AlAsm superlattices. Solid-State Electronics, 1994, 37(4–6): 613–616

19
Raman C V. A change of wave-length in light scattering. Nature, 1928, 121(3051): 619–619

DOI

20
Kudelski A.Analytical applications of Raman spectroscopy. Talanta, 200, 76(1): 1–8

21
Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85(25): 6239–6241

DOI

22
Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta, 2008, 606(2): 119–134

DOI PMID

23
Tolles W M, Nibler J W, McDonald J R, Harvey A B. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977, 31(4): 253–271

DOI

24
Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25

DOI PMID

25
Rostron P, Gaber S, Gaber D. Raman spectroscopy. International Journal of Engineering Research and Technology, 2016, 869(1): 50–64

26
Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM. Ultramicroscopy, 2004, 100(3–4): 437–441

DOI PMID

27
Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933

DOI PMID

28
Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-nm scale. Journal of Applied Physics, 1987, 61(10): 4723–4729

DOI

29
Albrecht T R, Quate C F. Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 1987, 62(7): 2599–2602

DOI

30
Rugar D, Mamin H J, Guethner P. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 1989, 55(25): 2588–2590

DOI

31
Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, 59(1–6): 1–152

DOI

32
Yang H U, Raschke M B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. New Journal of Physics, 2016, 18(5): 053042

DOI

33
Giessibl F J. AFM’s path to atomic resolution. Materials Today, 2005, 8(5): 32–41

DOI

34
Sarid V, Elings V. Review of scanning force microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1991, 9(2): 431

35
Giessibl F J. Atomic force microscopy in ultrahigh vacuum. Japanese Journal of Applied Physics, 1994, 33(6S): 3726–3734

36
Noy A, Vezenov D V, Kayyem J F, Meade T J, Lieber C M. Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & biology, 1997, 4(7): 519–527

DOI PMID

37
Giessibl F J. Advances in atomic force microscopy. Reviews of Modern Physics, 2003, 75(3): 949–983

DOI

38
Morita S, Giessibl F, Wiesendanger R. Noncontact Atomic Force Microscopy, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg, 2009

39
Hammiche A, Pollock H M, Reading M, Claybourn M, Turner P H, Jewkes K. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Applied Spectroscopy, 1999, 53(7): 810–815

DOI

40
Bozec L, Hammiche A, Pollock H M, Conroy M, Chalmers J M, Everall N J, Turin L. Localized photothermal infrared spectroscopy using a proximal probe. Journal of Applied Physics, 2001, 90(10): 5159–5165

DOI

41
Hammiche A, Bozec L, Pollock H M, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. Journal of Microscopy, 2004, 213(Pt 2): 129–134

DOI PMID

42
Majumdar A. Scanning thermal microscopy. Annual Review of Materials Science, 1999, 29(1): 505–585

DOI

43
Bozec L, Hammiche A, Tobin M, Chalmers J, Everall N, Pollock H. Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Measurement Science & Technology, 2002, 13(8): 1217–1222

DOI

44
Donaldson P M, Kelley C S, Frogley M D, Filik J, Wehbe K, Cinque G. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation. Optics Express, 2016, 24(3): 1852–1864

DOI PMID

45
Dazzi A, Prazeres R, Glotin F, Ortega J M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390

DOI PMID

46
Dazzi A, Prazeres R, Glotin F, Ortega J M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 2006, 49(1–2): 113–121

DOI

47
Dazzi A, Prazeres R, Glotin F, Ortega J M, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641

DOI PMID

48
Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega J M. Sub-100 nm IR spectromicroscopy of living cells. Optics Letters, 2008, 33(14): 1611–1613

DOI PMID

49
Houel J, Homeyer E, Sauvage S, Boucaud P, Dazzi A, Prazeres R, Ortéga J M. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope. Optics Express, 2009, 17(13): 10887–10894

DOI PMID

50
Mayet C, Dazzi A, Prazeres R, Ortega J M, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 2010, 135(10): 2540–2545

DOI PMID

51
Prater C, Kjoller K, Cook D, Shetty R, Meyers G, Reinhardt C, Felts J, King W, Vodopyanov K, Dazzi A. Nanoscale infrared spectroscopy of materials by atomic force microscopy. Microscopy and Analysis (Americas ed.), 2010, 24(3): 5–8

PMID

52
Marcott C, Lo M, Kjoller K, Prater C, Noda I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Applied Spectroscopy, 2011, 65(10): 1145–1150

DOI PMID

53
Felts J R, Kjoller K, Lo M, Prater C B, King W P. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano, 2012, 6(9): 8015–8021

DOI PMID

54
Lahiri B, Holland G, Centrone A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small, 2013, 9(3): 439–445

DOI PMID

55
Felts J R, Kjoller K, Prater C B, King W P. Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010, 136–139

56
Policar C, Waern J B, Plamont M A, Clède S, Mayet C, Prazeres R, Ortega J M, Vessières A, Dazzi A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angewandte Chemie (International ed. in English), 2011, 50(4): 860–864

DOI PMID

57
Lu F, Belkin M A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19(21): 19942–19947

DOI PMID

58
Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 2012, 66(12): 1365–1384

DOI PMID

59
Kwon B, Schulmerich M V, Elgass L J, Kong R, Holton S E, Bhargava R, King W P. Infrared microspectroscopy combined with conventional atomic force microscopy. Ultramicroscopy, 2012, 116: 56–61

DOI PMID

60
Felts J R, Cho H, Yu M F F, Bergman L A, Vakakis A F, King W P. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013, 84(2): 023709

DOI PMID

61
Cho H, Felts J R, Yu M F, Bergman L A, Vakakis A F, King W P. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 2013, 24(44): 444007

DOI PMID

62
Lu F, Jin M, Belkin M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8(4): 307–312

DOI

63
Felts J R, Law S, Roberts C M, Podolskiy V, Wasserman D M, King W P. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013, 102(15): 152110

DOI

64
Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Letters, 2013, 13(7): 3218–3224

DOI PMID

65
Katzenmeyer A M, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Advanced Optical Materials, 2014, 2(8): 718–722

DOI

66
Katzenmeyer A M, Aksyuk V, Centrone A. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Analytical Chemistry, 2013, 85(4): 1972–1979

DOI PMID

67
Katzenmeyer A M, Holland G, Kjoller K, Centrone A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Analytical Chemistry, 2015, 87(6): 3154–3159

DOI PMID

68
Williams C C, Wickramasinghe H K. Scanning thermal profiler. Applied Physics Letters, 1986, 49(23): 1587–1589

DOI

69
Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329

DOI

70
Sadat S, Tan A, Chua Y J, Reddy P. Nanoscale thermometry using point contact thermocouples. Nano Letters, 2010, 10(7): 2613–2617

DOI PMID

71
Kim K, Jeong W, Lee W, Reddy P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257

DOI PMID

72
Dai Z, King W P, Park K. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever. Nanotechnology, 2009, 20(9): 095301

DOI PMID

73
Lee J, Beechem T, Wright T L, Nelson B A, Graham S, King W P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655

DOI

74
Corbin E A, Park K, King W P. Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. Applied Physics Letters, 2009, 94(24): 243503

DOI

75
Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics, 2010, 107(12): 124519

DOI

76
Pechenezhskiy I V, Hong X, Nguyen G D, Dahl J E P, Carlson R M K, Wang F, Crommie M F. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111. Physical Review Letters, 2013, 111(12): 126101

DOI PMID

77
Nguyen T Q, Wu J, Tolbert S H, Schwartz B J. Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. Advanced Materials, 2001, 13(8): 609–611

DOI

78
Luo T, Chen G. Nanoscale heat transfer--from computation to experiment. Physical chemistry chemical physics : PCCP, 2013, 15(10): 3389–3412

DOI PMID

79
Wang Y, Liu J, Zhou J, Yang R. Thermoelectric transport across nanoscale polymer–semiconductor–polymer junctions. Journal of Physical Chemistry C, 2013, 117(47): 24716–24725

DOI

80
Merklin G T, He L, Griffiths P R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Applied Spectroscopy, 1999, 53(11): 1448–1453

DOI

81
Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters, 1984, 44(7): 651–653

DOI

82
Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophysical Journal, 1986, 49(1): 269–279

DOI PMID

83
Labardi M, Gucciardi P G, Allegrini M, Pelosi C. Assessment of NSOM resolution on III–V semiconductor thin films. Applied Physics. A, Materials Science & Processing, 1998, 66(S1): S397–S402

DOI

84
Isaacson M. Near-field scanning optical microscopy II. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena: JVST B, 1991, 9(6): 3103

DOI

85
Goodson K E, Ashegh M. Near-field optical thermometry. Microscale Thermophysical Engineering, 1997, 1(3): 225–235

DOI

86
Sasaki M, Tanaka K, Hane K. Cantilever probe integrated with light-emitting diode, waveguide, aperture, and photodiode for scanning near-field optical microscope. Japan Society of Applied Physics, 2000, 39(12B): 7150–7153

87
Michaelis J, Hettich C, Mlynek J, Sandoghdar V V. Optical microscopy using a single-molecule light source. Nature, 2000, 405(6784): 325–328

DOI PMID

88
Shubeita G T, Sekatskii S K, Dietler G, Potapova I, Mews A, Basché T. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210(Pt 3): 274–278

DOI PMID

89
Chevalier N, Nasse M J, Woehl J C, Reiss P, Bleuse J, Chandezon F, Huant S. CdSe single-nanoparticle based active tips for near-field optical microscopy. Nanotechnology, 2005, 16(4): 613–618

DOI

90
Kim J, Song K B. Recent progress of nano-technology with NSOM. Micron (Oxford, England: 1993), 2007, 38(4): 409–426

DOI PMID

91
Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43(4): 1248–1262

DOI PMID

92
Hartschuh A. Tip-enhanced near-field optical microscopy. Angewandte Chemie (International ed. in English), 2008, 47(43): 8178–8191

DOI PMID

93
Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser & Photonics Reviews, 2015, 9(6): 637–649

DOI

94
Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331

DOI PMID

95
Lucas M, Riedo E. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. The Review of Scientific Instruments, 2012, 83(6): 061101

DOI PMID

96
Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Physical Review Letters, 2000, 85(14): 3029–3032

DOI PMID

97
Yang T J, Lessard G A, Quake S R. An apertureless near-field microscope for fluorescence imaging. Applied Physics Letters, 2000, 76(3): 378–380

DOI

98
Labardi M, Tikhomirov O, Ascoli C, Allegrini M. Balanced homodyning for apertureless near-field optical imaging. The Review of Scientific Instruments, 2008, 79(3): 033709

DOI PMID

99
Gomez L, Bachelot R, Bouhelier A, Wiederrecht G P, Chang S H, Gray S K, Hua F, Jeon S, Rogers J A, Castro M E, Blaize S, Stefanon I, Lerondel G, Royer P. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America. B, Optical Physics, 2006, 23(5): 823

DOI

100
Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. Journal of Microscopy, 2003, 210(Pt 3): 311–314

DOI PMID

101
Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202(Pt 1): 77–83

DOI PMID

102
Raschke M B, Lienau C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83(24): 5089–5091

DOI

103
Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature, 1999, 399(6732): 134–137

DOI

104
Knoll B, Keilmann F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 2000, 182(4–6): 321–328

DOI

105
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light matter interaction at the nanometre scale. Nature, 2002, 418(6894): 159–162

DOI PMID

106
Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 2006, 89(10): 101124

DOI

107
Ocelic N. Quantitative near-field phonon-polariton spectroscopy. Dissertation for the Doctoral Degree. Munich: Technical University of Munich, 2007

108
Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications, 2014, 5: 3499

DOI PMID

109
Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 2008, 16(2): 494–501

DOI PMID

110
Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 2008, 8(11): 3766–3770

DOI PMID

111
O’Callahan B T, Lewis W E, Jones A C, Raschke M B. Spectral frustration and spatial coherence in thermal near-field spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(24): 245446

DOI

112
Babuty A, Joulain K, Chapuis P O, Greffet J J, De Wilde Y. Blackbody spectrum revisited in the near field. Physical Review Letters, 2013, 110(14): 146103

DOI PMID

113
O’Callahan B T, Raschke M B. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging. APL Photonics, 2017, 2(2):021301

DOI

114
Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291

DOI

115
Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Letters, 2009, 9(7): 2553–2558

DOI PMID

116
Taubner T, Keilmann F, Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Letters, 2004, 4(9): 1669–1672

DOI

117
Zhang L M, Andreev G O, Fei Z, McLeod A S, Dominguez G, Thiemens M, Castro-Neto A H, Basov D N, Fogler M M. Near-field spectroscopy of silicon dioxide thin films. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(7): 075419

DOI

118
Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Letters, 2011, 11(11): 4701–4705

DOI PMID

119
Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77–81

PMID

120
Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Letters, 2013, 13(3): 1065–1072

DOI PMID

121
Xu X G, Tanur A E, Walker G C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. Journal of Physical Chemistry A, 2013, 117(16): 3348–3354

DOI PMID

122
Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8(11): 821–825

DOI PMID

123
Berweger S, Nguyen D M, Muller E A, Bechtel H A, Perkins T T, Raschke M B. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. Journal of the American Chemical Society, 2013, 135(49): 18292–18295

DOI PMID

124
Xu X G, Gilburd L, Walker G C. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105(26): 263104

DOI

125
Yoxall E, Schnell M, Mastel S, Hillenbrand R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Optics Express, 2015, 23(10): 13358–13369

DOI PMID

126
Amarie S, Ganz T, Keilmann F. Mid-infrared near-field spectroscopy. Optics Express, 2009, 17(24): 21794–21801

DOI PMID

127
Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(4): 045404

DOI

128
Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(5): 479–484

DOI

129
Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl W W, Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology, 2012, 3: 312–323

DOI PMID

130
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 2012, 12(8): 3973–3978

DOI PMID

131
Xu X G, Rang M, Craig I M, Raschke M B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. The Journal of Physical Chemistry Letters, 2012, 3(13): 1836–1841

DOI PMID

132
Govyadinov A A, Amenabar I, Huth F, Carney P S, Hillenbrand R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. The Journal of Physical Chemistry Letters, 2013, 4(9): 1526–1531

DOI PMID

133
Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Communications, 2013, 4: 2890

DOI PMID

134
McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085136

DOI

135
Khatib O, Wood J D, McLeod A S, Goldflam M D, Wagner M, Damhorst G L, Koepke J C, Doidge G P, Rangarajan A, Bashir R, Pop E, Lyding J W, Thiemens M H, Keilmann F, Basov D N. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 2015, 9(8): 7968–7975

DOI PMID

136
Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8: 14402

DOI PMID

137
Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Materials, 2011, 10(5): 352–356

DOI PMID

138
O’Callahan B T, Lewis W E, Möbius S, Stanley J C, Muller E A, Raschke M B. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation. Optics Express, 2015, 23(25): 32063–32074

DOI PMID

139
Ikemoto Y, Ishikawa M, Nakashima S, Okamura H, Haruyama Y, Matsui S, Moriwaki T, Kinoshita T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Optics Communications, 2012, 285(8): 2212–2217

DOI

140
Hermann P, Hoehl A, Patoka P, Huth F, Rühl E, Ulm G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Optics Express, 2013, 21(3): 2913–2919

DOI PMID

141
Bechtel H A, Muller E A, Olmon R L, Martin M C, Raschke M B. Ultrabroadband infrared nanospectroscopic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7191–7196

DOI PMID

142
Peragut F, Brubach J B, Roy P, de Wilde Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Applied Physics Letters, 2014, 104(25): 251118

DOI

143
Jones A C, Raschke M B. Thermal infrared near-field spectroscopy. Nano Letters, 2012, 12(3): 1475–1481

DOI PMID

144
Jones A C, O’Callahan B T, Yang H U, Raschke M B. The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science, 2013, 88(4): 349–392

DOI

145
Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Physical Review Letters, 2013, 110(20): 203902

DOI PMID

146
Walford J N, Porto J A, Carminati R, Greffet J J, Adam P M, Hudlet S, Bijeon J L, Stashkevich A, Royer P. Influence of tip modulation on image formation in scanning near-field optical microscopy. Journal of Applied Physics, 2001, 89(9): 5159–5169

DOI

147
Joulain K, Ben-Abdallah P, Chapuis P O, de Wilde Y, Babuty A, Henkel C. Strong tip–sample coupling in thermal radiation scanning tunneling microscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 136: 1–15

DOI

148
Jarzembski A, Park K. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 191: 67–74

DOI

149
Cvitkovic A, Ocelic N, Hillenbrand R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 2007, 15(14): 8550–8565

DOI PMID

150
Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Physical Review Letters, 2006, 97(6): 060801

DOI PMID

151
Renger J, Grafström S, Eng L M, Hillenbrand R. Resonant light scattering by near-field-induced phonon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(7): 075410

DOI

152
Fikri R, Barchiesi D, H’Dhili F, Bachelot R, Vial A, Royer P. Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method. Optics Communications, 2003, 221(1–3): 13–22

DOI

153
Micic M, Klymyshyn N, Suh Y, Lu H. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. Journal of Physical Chemistry B, 2003, 107(7): 1574–1584

DOI

154
Brehm M, Schliesser A, Cajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express, 2008, 16(15): 11203–11215

DOI PMID

155
Sukhov S V. Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101(2–4): 111–122

DOI PMID

156
Hatano H, Kawata S. Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images. Journal of Microscopy, 1999, 194(2–3): 230–234

DOI PMID

157
Zhang Z M. Nano/microscale Heat Transfer, 5th ed. New York: McGraw Hill, 2007

158
Lee B J, Park K, Zhang Z M. Energy pathways in nanoscale thermal radiation. Applied Physics Letters, 2007, 91(15): 153101

DOI

159
Francoeur M, Basu S, Petersen S J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express, 2011, 19(20): 18774–18788

DOI PMID

160
Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82–85

PMID

161
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712

DOI PMID

162
Gowen A A, O’Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 2007, 18(12): 590–598

DOI

163
Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19(1): 010901

DOI PMID

164
Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045412

DOI

165
Wessel J. Surface-enhanced optical microscopy. Journal of the Optical Society of America. B, Optical Physics, 1985, 2(9): 1538

DOI

166
Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136

DOI

167
Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336

DOI

168
Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 2000, 76(21): 3130–3132

DOI

169
Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry, 2000, 68(12): 942–949

170
Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930

DOI PMID

171
Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman Spectroscopy–its status, challenges and future directions. Chemical Physics Letters, 2009, 472(1–3): 1–13

DOI

172
Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2015, 2(1): 9

DOI

173
Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban J J, Pang Y, Gordon R, Bokor J, Salmeron M B, Ogletree D F, Ashby P, Cabrini S, Schuck P J. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters, 2011, 11(3): 1201–1207

DOI PMID

174
Wickramasinghe H K, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano, 2014, 8(4): 3421–3426

DOI PMID

175
Sackrow M, Stanciu C, Lieb M A, Meixner A J. Imaging nanometre-sized hot spots on smooth AU films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem, 2008, 9(2): 316–320

DOI PMID

176
Tarun A, Hayazawa N, Motohashi M, Kawata S. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79(1): 013706

DOI PMID

177
Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chemical Physics Letters, 2005, 410(1–3): 136–141

DOI

178
Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem, 2006, 7(7): 1428–1430

DOI PMID

179
Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J. Towards a specific characterisation of components on a cell surface-combined TERS-investigations of lipids and human cells. Journal of Raman Spectroscopy: JRS, 2009, 40(10): 1452–1457

DOI

180
Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie (International ed. in English), 2008, 47(9): 1658–1661

DOI PMID

181
Deckert-Gaudig T, Bailo E, Deckert V. Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Physical chemistry chemical physics: PCCP, 2009, 11(34): 7360–7362

DOI PMID

182
Yeo B S, Amstad E, Schmid T, Stadler J, Zenobi R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small, 2009, 5(8): 952–960

DOI PMID

183
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586

DOI PMID

184
Wang X, Zhang D, Braun K, Egelhaaf H J, Brabec C J, Meixner A J. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Advanced Functional Materials, 2010, 20(3): 492–499

DOI

185
Lee N, Hartschuh R D, Mehtani D, Kisliuk A, Maguire J F, Green M, Foster M D, Sokolov A P. High contrast scanning nano-Raman spectroscopy of silicon. Journal of Raman Spectroscopy: JRS, 2007, 38(6): 789–796

DOI

186
Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180

DOI

187
Hoffmann G G, de With G, Loos J. Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromolecular Symposia, 2008, 265(1): 1–11

DOI

188
Neacsu C C, Dreyer J, Behr N, Raschke M B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 193406

DOI

189
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498(7452): 82–86

DOI PMID

190
Yeo B S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Applied Spectroscopy, 2006, 60(10): 1142–1147

DOI PMID

191
Cui X, Zhang W, Yeo B S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15(13): 8309–8316

DOI PMID

192
Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. Journal of Physical Chemistry C, 2007, 111(26): 9460–9464

DOI

193
Hayazawa N, Yano T A, Kawata S. Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy: JRS, 2012, 43(9): 1177–1182

DOI

194
Jahng J, Tork Ladani F, Khan R M, Potma E O. Photo-induced force for spectroscopic imaging at the nanoscale. Proceedings of the Society for Photo-Instrumentation Engineers, 2016, 9764: 97641J

DOI

195
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances, 2016, 2(3): e1501571

DOI PMID

196
Rajapaksa I, Uenal K, Wickramasinghe H K. Image force microscopy of molecular resonance: a microscope principle. Applied Physics Letters, 2010, 97(7): 073121

DOI PMID

197
Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. Applied Physics Letters, 2011, 99(16): 161103

DOI PMID

198
Huang F, Tamma V A, Mardy Z, Burdett J, Wickramasinghe H K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Scientific Reports, 2015, 5(1): 10610

DOI PMID

199
Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 2015, 48(10): 2671–2679

DOI PMID

200
Jahng J, Brocious J, Fishman D A, Yampolsky S, Nowak D, Huang F, Apkarian V A, Wickramasinghe H K, Potma E O. Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106(8): 083113

DOI

201
Murdick R A, Morrison W, Nowak D, Albrecht T R, Jahng J, Park S. Photoinduced force microscopy : a technique for hyperspectral nanochemical mapping. Japanese Journal of Applied Physics, 2017, 56(8): 08LA04

202
Jahng J, Brocious J, Fishman D A, Huang F, Li X, Tamma V A, Wickramasinghe H K, Potma E O. Gradient and scattering forces in photoinduced force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(15): 155417

DOI

203
Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O. Visualizing surface plasmon polaritons by their gradient force. Optics Letters, 2015, 40(21): 5058–5061

DOI PMID

204
Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I. Photoinduced force mapping of plasmonic nanostructures. Nano Letters, 2016, 16(12): 7942–7949

DOI PMID

205
Tamma V A, Huang F, Nowak D, Kumar Wickramasinghe H. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain. Applied Physics Letters, 2016, 108(23): 233107

DOI

206
Ambrosio A, Devlin R C, Capasso F, Wilson W L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 2017, 4(4): 846–851

DOI

Outlines

/