Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials
Received date: 29 Jul 2017
Accepted date: 22 Oct 2017
Published date: 08 Mar 2018
Copyright
Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.
Amun JARZEMBSKI , Cedric SHASKEY , Keunhan PARK . Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials[J]. Frontiers in Energy, 2018 , 12(1) : 43 -71 . DOI: 10.1007/s11708-018-0524-8
1 |
Derrick M, Stulick D, Landry J. Infrared Spectroscopy in Conservation Science. Getty Conservation Institute, USA, 2000
|
2 |
Griffiths P R, de Haseth J A. Fourier Transform Infrared Spectrometry, 2nd ed. Hoboken: John Wiley and Sons, 2007
|
3 |
Bhargava R, Ribar T, Koenig J. Towards faster FT-IR imaging by reducing noise. Applied Spectroscopy, 1999, 53(11): 1313–1322
|
4 |
Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging. Weinheim: Wiley-VCH, 2009
|
5 |
Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2006, 29(2): 238–246
|
6 |
Ghashami M, Cho S K, Park K. Near-field enhanced thermionic energy conversion for renewable energy recycling. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 198: 59–67
|
7 |
Park K, Zhang Z M. Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat & Mass Transfer, 2013, 4(1): 13001
|
8 |
Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press, 2005
|
9 |
Zayats A V, Richards D. Nano-optics and Near-field Optical Microscopy. Norwood: Artech House, 2009
|
10 |
Orrit M. Nobel Prize in chemistry: celebrating optical nanoscopy. Nature Photonics, 2014, 8(12): 887–888
|
11 |
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. Morlenbach: John Wiley & Sons, 1983
|
12 |
Miller L M, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica et Biophysica Acta, 2006, 1758(7): 846–857
|
13 |
Sullivan D H, Conner W C, Harold M P. Surface analysis with FT-IR emission spectroscopy. Applied Spectroscopy, 1992, 46(5): 811–818
|
14 |
Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C. THz-spectroscopy of biological molecules. Journal of Biological Physics, 2003, 29(2–3): 89–100
|
15 |
Jin X Y, Kim K J, Lee H S. Grazing incidence reflection absorption Fourier transform infrared (GIRA-FTIR) spectroscopic studies on the ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) ultrathin films. Polymer, 2005, 46(26): 12410–12415
|
16 |
Schliesser A, Brehm M, Keilmann F, van der Weide D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Optics Express, 2005, 13(22): 9029–9038
|
17 |
Nyga P, Drachev V P, Thoreson M D, Shalaev V M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics. B, Lasers and Optics, 2008, 93(1): 59–68
|
18 |
Yu A I T, Pusep A, Milekhin A H. FTIR spectroscopy of longitudinal confined phonons and plasmon-phonon vibrational modes in GaAsn/AlAsm superlattices. Solid-State Electronics, 1994, 37(4–6): 613–616
|
19 |
Raman C V. A change of wave-length in light scattering. Nature, 1928, 121(3051): 619–619
|
20 |
Kudelski A.Analytical applications of Raman spectroscopy. Talanta, 200, 76(1): 1–8
|
21 |
Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85(25): 6239–6241
|
22 |
Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta, 2008, 606(2): 119–134
|
23 |
Tolles W M, Nibler J W, McDonald J R, Harvey A B. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977, 31(4): 253–271
|
24 |
Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25
|
25 |
Rostron P, Gaber S, Gaber D. Raman spectroscopy. International Journal of Engineering Research and Technology, 2016, 869(1): 50–64
|
26 |
Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM. Ultramicroscopy, 2004, 100(3–4): 437–441
|
27 |
Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933
|
28 |
Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-nm scale. Journal of Applied Physics, 1987, 61(10): 4723–4729
|
29 |
Albrecht T R, Quate C F. Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 1987, 62(7): 2599–2602
|
30 |
Rugar D, Mamin H J, Guethner P. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 1989, 55(25): 2588–2590
|
31 |
Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, 59(1–6): 1–152
|
32 |
Yang H U, Raschke M B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. New Journal of Physics, 2016, 18(5): 053042
|
33 |
Giessibl F J. AFM’s path to atomic resolution. Materials Today, 2005, 8(5): 32–41
|
34 |
Sarid V, Elings V. Review of scanning force microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1991, 9(2): 431
|
35 |
Giessibl F J. Atomic force microscopy in ultrahigh vacuum. Japanese Journal of Applied Physics, 1994, 33(6S): 3726–3734
|
36 |
Noy A, Vezenov D V, Kayyem J F, Meade T J, Lieber C M. Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & biology, 1997, 4(7): 519–527
|
37 |
Giessibl F J. Advances in atomic force microscopy. Reviews of Modern Physics, 2003, 75(3): 949–983
|
38 |
Morita S, Giessibl F, Wiesendanger R. Noncontact Atomic Force Microscopy, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg, 2009
|
39 |
Hammiche A, Pollock H M, Reading M, Claybourn M, Turner P H, Jewkes K. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Applied Spectroscopy, 1999, 53(7): 810–815
|
40 |
Bozec L, Hammiche A, Pollock H M, Conroy M, Chalmers J M, Everall N J, Turin L. Localized photothermal infrared spectroscopy using a proximal probe. Journal of Applied Physics, 2001, 90(10): 5159–5165
|
41 |
Hammiche A, Bozec L, Pollock H M, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. Journal of Microscopy, 2004, 213(Pt 2): 129–134
|
42 |
Majumdar A. Scanning thermal microscopy. Annual Review of Materials Science, 1999, 29(1): 505–585
|
43 |
Bozec L, Hammiche A, Tobin M, Chalmers J, Everall N, Pollock H. Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Measurement Science & Technology, 2002, 13(8): 1217–1222
|
44 |
Donaldson P M, Kelley C S, Frogley M D, Filik J, Wehbe K, Cinque G. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation. Optics Express, 2016, 24(3): 1852–1864
|
45 |
Dazzi A, Prazeres R, Glotin F, Ortega J M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390
|
46 |
Dazzi A, Prazeres R, Glotin F, Ortega J M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 2006, 49(1–2): 113–121
|
47 |
Dazzi A, Prazeres R, Glotin F, Ortega J M, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641
|
48 |
Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega J M. Sub-100 nm IR spectromicroscopy of living cells. Optics Letters, 2008, 33(14): 1611–1613
|
49 |
Houel J, Homeyer E, Sauvage S, Boucaud P, Dazzi A, Prazeres R, Ortéga J M. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope. Optics Express, 2009, 17(13): 10887–10894
|
50 |
Mayet C, Dazzi A, Prazeres R, Ortega J M, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 2010, 135(10): 2540–2545
|
51 |
Prater C, Kjoller K, Cook D, Shetty R, Meyers G, Reinhardt C, Felts J, King W, Vodopyanov K, Dazzi A. Nanoscale infrared spectroscopy of materials by atomic force microscopy. Microscopy and Analysis (Americas ed.), 2010, 24(3): 5–8
|
52 |
Marcott C, Lo M, Kjoller K, Prater C, Noda I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Applied Spectroscopy, 2011, 65(10): 1145–1150
|
53 |
Felts J R, Kjoller K, Lo M, Prater C B, King W P. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano, 2012, 6(9): 8015–8021
|
54 |
Lahiri B, Holland G, Centrone A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small, 2013, 9(3): 439–445
|
55 |
Felts J R, Kjoller K, Prater C B, King W P. Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010, 136–139
|
56 |
Policar C, Waern J B, Plamont M A, Clède S, Mayet C, Prazeres R, Ortega J M, Vessières A, Dazzi A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angewandte Chemie (International ed. in English), 2011, 50(4): 860–864
|
57 |
Lu F, Belkin M A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19(21): 19942–19947
|
58 |
Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 2012, 66(12): 1365–1384
|
59 |
Kwon B, Schulmerich M V, Elgass L J, Kong R, Holton S E, Bhargava R, King W P. Infrared microspectroscopy combined with conventional atomic force microscopy. Ultramicroscopy, 2012, 116: 56–61
|
60 |
Felts J R, Cho H, Yu M F F, Bergman L A, Vakakis A F, King W P. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013, 84(2): 023709
|
61 |
Cho H, Felts J R, Yu M F, Bergman L A, Vakakis A F, King W P. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 2013, 24(44): 444007
|
62 |
Lu F, Jin M, Belkin M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8(4): 307–312
|
63 |
Felts J R, Law S, Roberts C M, Podolskiy V, Wasserman D M, King W P. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013, 102(15): 152110
|
64 |
Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Letters, 2013, 13(7): 3218–3224
|
65 |
Katzenmeyer A M, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Advanced Optical Materials, 2014, 2(8): 718–722
|
66 |
Katzenmeyer A M, Aksyuk V, Centrone A. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Analytical Chemistry, 2013, 85(4): 1972–1979
|
67 |
Katzenmeyer A M, Holland G, Kjoller K, Centrone A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Analytical Chemistry, 2015, 87(6): 3154–3159
|
68 |
Williams C C, Wickramasinghe H K. Scanning thermal profiler. Applied Physics Letters, 1986, 49(23): 1587–1589
|
69 |
Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329
|
70 |
Sadat S, Tan A, Chua Y J, Reddy P. Nanoscale thermometry using point contact thermocouples. Nano Letters, 2010, 10(7): 2613–2617
|
71 |
Kim K, Jeong W, Lee W, Reddy P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257
|
72 |
Dai Z, King W P, Park K. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever. Nanotechnology, 2009, 20(9): 095301
|
73 |
Lee J, Beechem T, Wright T L, Nelson B A, Graham S, King W P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655
|
74 |
Corbin E A, Park K, King W P. Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. Applied Physics Letters, 2009, 94(24): 243503
|
75 |
Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics, 2010, 107(12): 124519
|
76 |
Pechenezhskiy I V, Hong X, Nguyen G D, Dahl J E P, Carlson R M K, Wang F, Crommie M F. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111. Physical Review Letters, 2013, 111(12): 126101
|
77 |
Nguyen T Q, Wu J, Tolbert S H, Schwartz B J. Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. Advanced Materials, 2001, 13(8): 609–611
|
78 |
Luo T, Chen G. Nanoscale heat transfer--from computation to experiment. Physical chemistry chemical physics : PCCP, 2013, 15(10): 3389–3412
|
79 |
Wang Y, Liu J, Zhou J, Yang R. Thermoelectric transport across nanoscale polymer–semiconductor–polymer junctions. Journal of Physical Chemistry C, 2013, 117(47): 24716–24725
|
80 |
Merklin G T, He L, Griffiths P R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Applied Spectroscopy, 1999, 53(11): 1448–1453
|
81 |
Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters, 1984, 44(7): 651–653
|
82 |
Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophysical Journal, 1986, 49(1): 269–279
|
83 |
Labardi M, Gucciardi P G, Allegrini M, Pelosi C. Assessment of NSOM resolution on III–V semiconductor thin films. Applied Physics. A, Materials Science & Processing, 1998, 66(S1): S397–S402
|
84 |
Isaacson M. Near-field scanning optical microscopy II. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena: JVST B, 1991, 9(6): 3103
|
85 |
Goodson K E, Ashegh M. Near-field optical thermometry. Microscale Thermophysical Engineering, 1997, 1(3): 225–235
|
86 |
Sasaki M, Tanaka K, Hane K. Cantilever probe integrated with light-emitting diode, waveguide, aperture, and photodiode for scanning near-field optical microscope. Japan Society of Applied Physics, 2000, 39(12B): 7150–7153
|
87 |
Michaelis J, Hettich C, Mlynek J, Sandoghdar V V. Optical microscopy using a single-molecule light source. Nature, 2000, 405(6784): 325–328
|
88 |
Shubeita G T, Sekatskii S K, Dietler G, Potapova I, Mews A, Basché T. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210(Pt 3): 274–278
|
89 |
Chevalier N, Nasse M J, Woehl J C, Reiss P, Bleuse J, Chandezon F, Huant S. CdSe single-nanoparticle based active tips for near-field optical microscopy. Nanotechnology, 2005, 16(4): 613–618
|
90 |
Kim J, Song K B. Recent progress of nano-technology with NSOM. Micron (Oxford, England: 1993), 2007, 38(4): 409–426
|
91 |
Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43(4): 1248–1262
|
92 |
Hartschuh A. Tip-enhanced near-field optical microscopy. Angewandte Chemie (International ed. in English), 2008, 47(43): 8178–8191
|
93 |
Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser & Photonics Reviews, 2015, 9(6): 637–649
|
94 |
Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331
|
95 |
Lucas M, Riedo E. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. The Review of Scientific Instruments, 2012, 83(6): 061101
|
96 |
Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Physical Review Letters, 2000, 85(14): 3029–3032
|
97 |
Yang T J, Lessard G A, Quake S R. An apertureless near-field microscope for fluorescence imaging. Applied Physics Letters, 2000, 76(3): 378–380
|
98 |
Labardi M, Tikhomirov O, Ascoli C, Allegrini M. Balanced homodyning for apertureless near-field optical imaging. The Review of Scientific Instruments, 2008, 79(3): 033709
|
99 |
Gomez L, Bachelot R, Bouhelier A, Wiederrecht G P, Chang S H, Gray S K, Hua F, Jeon S, Rogers J A, Castro M E, Blaize S, Stefanon I, Lerondel G, Royer P. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America. B, Optical Physics, 2006, 23(5): 823
|
100 |
Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. Journal of Microscopy, 2003, 210(Pt 3): 311–314
|
101 |
Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202(Pt 1): 77–83
|
102 |
Raschke M B, Lienau C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83(24): 5089–5091
|
103 |
Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature, 1999, 399(6732): 134–137
|
104 |
Knoll B, Keilmann F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 2000, 182(4–6): 321–328
|
105 |
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light matter interaction at the nanometre scale. Nature, 2002, 418(6894): 159–162
|
106 |
Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 2006, 89(10): 101124
|
107 |
Ocelic N. Quantitative near-field phonon-polariton spectroscopy. Dissertation for the Doctoral Degree. Munich: Technical University of Munich, 2007
|
108 |
Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications, 2014, 5: 3499
|
109 |
Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 2008, 16(2): 494–501
|
110 |
Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 2008, 8(11): 3766–3770
|
111 |
O’Callahan B T, Lewis W E, Jones A C, Raschke M B. Spectral frustration and spatial coherence in thermal near-field spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(24): 245446
|
112 |
Babuty A, Joulain K, Chapuis P O, Greffet J J, De Wilde Y. Blackbody spectrum revisited in the near field. Physical Review Letters, 2013, 110(14): 146103
|
113 |
O’Callahan B T, Raschke M B. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging. APL Photonics, 2017, 2(2):021301
|
114 |
Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291
|
115 |
Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Letters, 2009, 9(7): 2553–2558
|
116 |
Taubner T, Keilmann F, Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Letters, 2004, 4(9): 1669–1672
|
117 |
Zhang L M, Andreev G O, Fei Z, McLeod A S, Dominguez G, Thiemens M, Castro-Neto A H, Basov D N, Fogler M M. Near-field spectroscopy of silicon dioxide thin films. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(7): 075419
|
118 |
Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Letters, 2011, 11(11): 4701–4705
|
119 |
Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77–81
|
120 |
Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Letters, 2013, 13(3): 1065–1072
|
121 |
Xu X G, Tanur A E, Walker G C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. Journal of Physical Chemistry A, 2013, 117(16): 3348–3354
|
122 |
Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8(11): 821–825
|
123 |
Berweger S, Nguyen D M, Muller E A, Bechtel H A, Perkins T T, Raschke M B. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. Journal of the American Chemical Society, 2013, 135(49): 18292–18295
|
124 |
Xu X G, Gilburd L, Walker G C. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105(26): 263104
|
125 |
Yoxall E, Schnell M, Mastel S, Hillenbrand R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Optics Express, 2015, 23(10): 13358–13369
|
126 |
Amarie S, Ganz T, Keilmann F. Mid-infrared near-field spectroscopy. Optics Express, 2009, 17(24): 21794–21801
|
127 |
Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(4): 045404
|
128 |
Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(5): 479–484
|
129 |
Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl W W, Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology, 2012, 3: 312–323
|
130 |
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 2012, 12(8): 3973–3978
|
131 |
Xu X G, Rang M, Craig I M, Raschke M B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. The Journal of Physical Chemistry Letters, 2012, 3(13): 1836–1841
|
132 |
Govyadinov A A, Amenabar I, Huth F, Carney P S, Hillenbrand R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. The Journal of Physical Chemistry Letters, 2013, 4(9): 1526–1531
|
133 |
Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Communications, 2013, 4: 2890
|
134 |
McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085136
|
135 |
Khatib O, Wood J D, McLeod A S, Goldflam M D, Wagner M, Damhorst G L, Koepke J C, Doidge G P, Rangarajan A, Bashir R, Pop E, Lyding J W, Thiemens M H, Keilmann F, Basov D N. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 2015, 9(8): 7968–7975
|
136 |
Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8: 14402
|
137 |
Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Materials, 2011, 10(5): 352–356
|
138 |
O’Callahan B T, Lewis W E, Möbius S, Stanley J C, Muller E A, Raschke M B. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation. Optics Express, 2015, 23(25): 32063–32074
|
139 |
Ikemoto Y, Ishikawa M, Nakashima S, Okamura H, Haruyama Y, Matsui S, Moriwaki T, Kinoshita T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Optics Communications, 2012, 285(8): 2212–2217
|
140 |
Hermann P, Hoehl A, Patoka P, Huth F, Rühl E, Ulm G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Optics Express, 2013, 21(3): 2913–2919
|
141 |
Bechtel H A, Muller E A, Olmon R L, Martin M C, Raschke M B. Ultrabroadband infrared nanospectroscopic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7191–7196
|
142 |
Peragut F, Brubach J B, Roy P, de Wilde Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Applied Physics Letters, 2014, 104(25): 251118
|
143 |
Jones A C, Raschke M B. Thermal infrared near-field spectroscopy. Nano Letters, 2012, 12(3): 1475–1481
|
144 |
Jones A C, O’Callahan B T, Yang H U, Raschke M B. The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science, 2013, 88(4): 349–392
|
145 |
Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Physical Review Letters, 2013, 110(20): 203902
|
146 |
Walford J N, Porto J A, Carminati R, Greffet J J, Adam P M, Hudlet S, Bijeon J L, Stashkevich A, Royer P. Influence of tip modulation on image formation in scanning near-field optical microscopy. Journal of Applied Physics, 2001, 89(9): 5159–5169
|
147 |
Joulain K, Ben-Abdallah P, Chapuis P O, de Wilde Y, Babuty A, Henkel C. Strong tip–sample coupling in thermal radiation scanning tunneling microscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 136: 1–15
|
148 |
Jarzembski A, Park K. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 191: 67–74
|
149 |
Cvitkovic A, Ocelic N, Hillenbrand R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 2007, 15(14): 8550–8565
|
150 |
Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Physical Review Letters, 2006, 97(6): 060801
|
151 |
Renger J, Grafström S, Eng L M, Hillenbrand R. Resonant light scattering by near-field-induced phonon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(7): 075410
|
152 |
Fikri R, Barchiesi D, H’Dhili F, Bachelot R, Vial A, Royer P. Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method. Optics Communications, 2003, 221(1–3): 13–22
|
153 |
Micic M, Klymyshyn N, Suh Y, Lu H. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. Journal of Physical Chemistry B, 2003, 107(7): 1574–1584
|
154 |
Brehm M, Schliesser A, Cajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express, 2008, 16(15): 11203–11215
|
155 |
Sukhov S V. Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101(2–4): 111–122
|
156 |
Hatano H, Kawata S. Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images. Journal of Microscopy, 1999, 194(2–3): 230–234
|
157 |
Zhang Z M. Nano/microscale Heat Transfer, 5th ed. New York: McGraw Hill, 2007
|
158 |
Lee B J, Park K, Zhang Z M. Energy pathways in nanoscale thermal radiation. Applied Physics Letters, 2007, 91(15): 153101
|
159 |
Francoeur M, Basu S, Petersen S J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express, 2011, 19(20): 18774–18788
|
160 |
Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82–85
|
161 |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
|
162 |
Gowen A A, O’Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 2007, 18(12): 590–598
|
163 |
Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19(1): 010901
|
164 |
Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045412
|
165 |
Wessel J. Surface-enhanced optical microscopy. Journal of the Optical Society of America. B, Optical Physics, 1985, 2(9): 1538
|
166 |
Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136
|
167 |
Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336
|
168 |
Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 2000, 76(21): 3130–3132
|
169 |
Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry, 2000, 68(12): 942–949
|
170 |
Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930
|
171 |
Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman Spectroscopy–its status, challenges and future directions. Chemical Physics Letters, 2009, 472(1–3): 1–13
|
172 |
Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2015, 2(1): 9
|
173 |
Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban J J, Pang Y, Gordon R, Bokor J, Salmeron M B, Ogletree D F, Ashby P, Cabrini S, Schuck P J. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters, 2011, 11(3): 1201–1207
|
174 |
Wickramasinghe H K, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano, 2014, 8(4): 3421–3426
|
175 |
Sackrow M, Stanciu C, Lieb M A, Meixner A J. Imaging nanometre-sized hot spots on smooth AU films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem, 2008, 9(2): 316–320
|
176 |
Tarun A, Hayazawa N, Motohashi M, Kawata S. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79(1): 013706
|
177 |
Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chemical Physics Letters, 2005, 410(1–3): 136–141
|
178 |
Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem, 2006, 7(7): 1428–1430
|
179 |
Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J. Towards a specific characterisation of components on a cell surface-combined TERS-investigations of lipids and human cells. Journal of Raman Spectroscopy: JRS, 2009, 40(10): 1452–1457
|
180 |
Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie (International ed. in English), 2008, 47(9): 1658–1661
|
181 |
Deckert-Gaudig T, Bailo E, Deckert V. Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Physical chemistry chemical physics: PCCP, 2009, 11(34): 7360–7362
|
182 |
Yeo B S, Amstad E, Schmid T, Stadler J, Zenobi R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small, 2009, 5(8): 952–960
|
183 |
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586
|
184 |
Wang X, Zhang D, Braun K, Egelhaaf H J, Brabec C J, Meixner A J. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Advanced Functional Materials, 2010, 20(3): 492–499
|
185 |
Lee N, Hartschuh R D, Mehtani D, Kisliuk A, Maguire J F, Green M, Foster M D, Sokolov A P. High contrast scanning nano-Raman spectroscopy of silicon. Journal of Raman Spectroscopy: JRS, 2007, 38(6): 789–796
|
186 |
Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180
|
187 |
Hoffmann G G, de With G, Loos J. Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromolecular Symposia, 2008, 265(1): 1–11
|
188 |
Neacsu C C, Dreyer J, Behr N, Raschke M B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 193406
|
189 |
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498(7452): 82–86
|
190 |
Yeo B S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Applied Spectroscopy, 2006, 60(10): 1142–1147
|
191 |
Cui X, Zhang W, Yeo B S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15(13): 8309–8316
|
192 |
Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. Journal of Physical Chemistry C, 2007, 111(26): 9460–9464
|
193 |
Hayazawa N, Yano T A, Kawata S. Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy: JRS, 2012, 43(9): 1177–1182
|
194 |
Jahng J, Tork Ladani F, Khan R M, Potma E O. Photo-induced force for spectroscopic imaging at the nanoscale. Proceedings of the Society for Photo-Instrumentation Engineers, 2016, 9764: 97641J
|
195 |
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances, 2016, 2(3): e1501571
|
196 |
Rajapaksa I, Uenal K, Wickramasinghe H K. Image force microscopy of molecular resonance: a microscope principle. Applied Physics Letters, 2010, 97(7): 073121
|
197 |
Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. Applied Physics Letters, 2011, 99(16): 161103
|
198 |
Huang F, Tamma V A, Mardy Z, Burdett J, Wickramasinghe H K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Scientific Reports, 2015, 5(1): 10610
|
199 |
Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 2015, 48(10): 2671–2679
|
200 |
Jahng J, Brocious J, Fishman D A, Yampolsky S, Nowak D, Huang F, Apkarian V A, Wickramasinghe H K, Potma E O. Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106(8): 083113
|
201 |
Murdick R A, Morrison W, Nowak D, Albrecht T R, Jahng J, Park S. Photoinduced force microscopy : a technique for hyperspectral nanochemical mapping. Japanese Journal of Applied Physics, 2017, 56(8): 08LA04
|
202 |
Jahng J, Brocious J, Fishman D A, Huang F, Li X, Tamma V A, Wickramasinghe H K, Potma E O. Gradient and scattering forces in photoinduced force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(15): 155417
|
203 |
Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O. Visualizing surface plasmon polaritons by their gradient force. Optics Letters, 2015, 40(21): 5058–5061
|
204 |
Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I. Photoinduced force mapping of plasmonic nanostructures. Nano Letters, 2016, 16(12): 7942–7949
|
205 |
Tamma V A, Huang F, Nowak D, Kumar Wickramasinghe H. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain. Applied Physics Letters, 2016, 108(23): 233107
|
206 |
Ambrosio A, Devlin R C, Capasso F, Wilson W L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 2017, 4(4): 846–851
|
/
〈 | 〉 |