Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

PDF(1307 KB)
PDF(1307 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 43-71. DOI: 10.1007/s11708-018-0524-8
REVIEW ARTICLE
REVIEW ARTICLE

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Author information +
History +

Abstract

Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

Keywords

vibrational spectroscopy / atomic force microscopy / photo-thermal induced resonance / scanning near-field optical microscopy / tip-enhanced Raman spectroscopy / photo-induced force microscopy / molecular resonances / surface phonon polaritons / energy materials

Cite this article

Download citation ▾
Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Front. Energy, 2018, 12(1): 43‒71 https://doi.org/10.1007/s11708-018-0524-8

References

[1]
Derrick M, Stulick D, Landry J. Infrared Spectroscopy in Conservation Science. Getty Conservation Institute, USA, 2000
[2]
Griffiths P R, de Haseth J A. Fourier Transform Infrared Spectrometry, 2nd ed. Hoboken: John Wiley and Sons, 2007
[3]
Bhargava R, Ribar T, Koenig J. Towards faster FT-IR imaging by reducing noise. Applied Spectroscopy, 1999, 53(11): 1313–1322
CrossRef Google scholar
[4]
Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging. Weinheim: Wiley-VCH, 2009
[5]
Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2006, 29(2): 238–246
CrossRef Google scholar
[6]
Ghashami M, Cho S K, Park K. Near-field enhanced thermionic energy conversion for renewable energy recycling. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 198: 59–67
CrossRef Google scholar
[7]
Park K, Zhang Z M. Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat & Mass Transfer, 2013, 4(1): 13001
CrossRef Google scholar
[8]
Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press, 2005
[9]
Zayats A V, Richards D. Nano-optics and Near-field Optical Microscopy. Norwood: Artech House, 2009
[10]
Orrit M. Nobel Prize in chemistry: celebrating optical nanoscopy. Nature Photonics, 2014, 8(12): 887–888
CrossRef Google scholar
[11]
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. Morlenbach: John Wiley & Sons, 1983
[12]
Miller L M, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica et Biophysica Acta, 2006, 1758(7): 846–857
CrossRef Pubmed Google scholar
[13]
Sullivan D H, Conner W C, Harold M P. Surface analysis with FT-IR emission spectroscopy. Applied Spectroscopy, 1992, 46(5): 811–818
CrossRef Google scholar
[14]
Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C. THz-spectroscopy of biological molecules. Journal of Biological Physics, 2003, 29(2–3): 89–100
CrossRef Pubmed Google scholar
[15]
Jin X Y, Kim K J, Lee H S. Grazing incidence reflection absorption Fourier transform infrared (GIRA-FTIR) spectroscopic studies on the ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) ultrathin films. Polymer, 2005, 46(26): 12410–12415
CrossRef Google scholar
[16]
Schliesser A, Brehm M, Keilmann F, van der Weide D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Optics Express, 2005, 13(22): 9029–9038
CrossRef Pubmed Google scholar
[17]
Nyga P, Drachev V P, Thoreson M D, Shalaev V M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics. B, Lasers and Optics, 2008, 93(1): 59–68
CrossRef Google scholar
[18]
Yu A I T, Pusep A, Milekhin A H. FTIR spectroscopy of longitudinal confined phonons and plasmon-phonon vibrational modes in GaAsn/AlAsm superlattices. Solid-State Electronics, 1994, 37(4–6): 613–616
[19]
Raman C V. A change of wave-length in light scattering. Nature, 1928, 121(3051): 619–619
CrossRef Google scholar
[20]
Kudelski A.Analytical applications of Raman spectroscopy. Talanta, 200, 76(1): 1–8
[21]
Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85(25): 6239–6241
CrossRef Google scholar
[22]
Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta, 2008, 606(2): 119–134
CrossRef Pubmed Google scholar
[23]
Tolles W M, Nibler J W, McDonald J R, Harvey A B. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977, 31(4): 253–271
CrossRef Google scholar
[24]
Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25
CrossRef Pubmed Google scholar
[25]
Rostron P, Gaber S, Gaber D. Raman spectroscopy. International Journal of Engineering Research and Technology, 2016, 869(1): 50–64
[26]
Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM. Ultramicroscopy, 2004, 100(3–4): 437–441
CrossRef Pubmed Google scholar
[27]
Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933
CrossRef Pubmed Google scholar
[28]
Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-nm scale. Journal of Applied Physics, 1987, 61(10): 4723–4729
CrossRef Google scholar
[29]
Albrecht T R, Quate C F. Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 1987, 62(7): 2599–2602
CrossRef Google scholar
[30]
Rugar D, Mamin H J, Guethner P. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 1989, 55(25): 2588–2590
CrossRef Google scholar
[31]
Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, 59(1–6): 1–152
CrossRef Google scholar
[32]
Yang H U, Raschke M B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. New Journal of Physics, 2016, 18(5): 053042
CrossRef Google scholar
[33]
Giessibl F J. AFM’s path to atomic resolution. Materials Today, 2005, 8(5): 32–41
CrossRef Google scholar
[34]
Sarid V, Elings V. Review of scanning force microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1991, 9(2): 431
[35]
Giessibl F J. Atomic force microscopy in ultrahigh vacuum. Japanese Journal of Applied Physics, 1994, 33(6S): 3726–3734
[36]
Noy A, Vezenov D V, Kayyem J F, Meade T J, Lieber C M. Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & biology, 1997, 4(7): 519–527
CrossRef Pubmed Google scholar
[37]
Giessibl F J. Advances in atomic force microscopy. Reviews of Modern Physics, 2003, 75(3): 949–983
CrossRef Google scholar
[38]
Morita S, Giessibl F, Wiesendanger R. Noncontact Atomic Force Microscopy, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg, 2009
[39]
Hammiche A, Pollock H M, Reading M, Claybourn M, Turner P H, Jewkes K. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Applied Spectroscopy, 1999, 53(7): 810–815
CrossRef Google scholar
[40]
Bozec L, Hammiche A, Pollock H M, Conroy M, Chalmers J M, Everall N J, Turin L. Localized photothermal infrared spectroscopy using a proximal probe. Journal of Applied Physics, 2001, 90(10): 5159–5165
CrossRef Google scholar
[41]
Hammiche A, Bozec L, Pollock H M, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. Journal of Microscopy, 2004, 213(Pt 2): 129–134
CrossRef Pubmed Google scholar
[42]
Majumdar A. Scanning thermal microscopy. Annual Review of Materials Science, 1999, 29(1): 505–585
CrossRef Google scholar
[43]
Bozec L, Hammiche A, Tobin M, Chalmers J, Everall N, Pollock H. Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Measurement Science & Technology, 2002, 13(8): 1217–1222
CrossRef Google scholar
[44]
Donaldson P M, Kelley C S, Frogley M D, Filik J, Wehbe K, Cinque G. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation. Optics Express, 2016, 24(3): 1852–1864
CrossRef Pubmed Google scholar
[45]
Dazzi A, Prazeres R, Glotin F, Ortega J M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390
CrossRef Pubmed Google scholar
[46]
Dazzi A, Prazeres R, Glotin F, Ortega J M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 2006, 49(1–2): 113–121
CrossRef Google scholar
[47]
Dazzi A, Prazeres R, Glotin F, Ortega J M, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641
CrossRef Pubmed Google scholar
[48]
Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega J M. Sub-100 nm IR spectromicroscopy of living cells. Optics Letters, 2008, 33(14): 1611–1613
CrossRef Pubmed Google scholar
[49]
Houel J, Homeyer E, Sauvage S, Boucaud P, Dazzi A, Prazeres R, Ortéga J M. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope. Optics Express, 2009, 17(13): 10887–10894
CrossRef Pubmed Google scholar
[50]
Mayet C, Dazzi A, Prazeres R, Ortega J M, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 2010, 135(10): 2540–2545
CrossRef Pubmed Google scholar
[51]
Prater C, Kjoller K, Cook D, Shetty R, Meyers G, Reinhardt C, Felts J, King W, Vodopyanov K, Dazzi A. Nanoscale infrared spectroscopy of materials by atomic force microscopy. Microscopy and Analysis (Americas ed.), 2010, 24(3): 5–8
Pubmed
[52]
Marcott C, Lo M, Kjoller K, Prater C, Noda I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Applied Spectroscopy, 2011, 65(10): 1145–1150
CrossRef Pubmed Google scholar
[53]
Felts J R, Kjoller K, Lo M, Prater C B, King W P. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano, 2012, 6(9): 8015–8021
CrossRef Pubmed Google scholar
[54]
Lahiri B, Holland G, Centrone A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small, 2013, 9(3): 439–445
CrossRef Pubmed Google scholar
[55]
Felts J R, Kjoller K, Prater C B, King W P. Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010, 136–139
[56]
Policar C, Waern J B, Plamont M A, Clède S, Mayet C, Prazeres R, Ortega J M, Vessières A, Dazzi A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angewandte Chemie (International ed. in English), 2011, 50(4): 860–864
CrossRef Pubmed Google scholar
[57]
Lu F, Belkin M A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19(21): 19942–19947
CrossRef Pubmed Google scholar
[58]
Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 2012, 66(12): 1365–1384
CrossRef Pubmed Google scholar
[59]
Kwon B, Schulmerich M V, Elgass L J, Kong R, Holton S E, Bhargava R, King W P. Infrared microspectroscopy combined with conventional atomic force microscopy. Ultramicroscopy, 2012, 116: 56–61
CrossRef Pubmed Google scholar
[60]
Felts J R, Cho H, Yu M F F, Bergman L A, Vakakis A F, King W P. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013, 84(2): 023709
CrossRef Pubmed Google scholar
[61]
Cho H, Felts J R, Yu M F, Bergman L A, Vakakis A F, King W P. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 2013, 24(44): 444007
CrossRef Pubmed Google scholar
[62]
Lu F, Jin M, Belkin M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8(4): 307–312
CrossRef Google scholar
[63]
Felts J R, Law S, Roberts C M, Podolskiy V, Wasserman D M, King W P. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013, 102(15): 152110
CrossRef Google scholar
[64]
Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Letters, 2013, 13(7): 3218–3224
CrossRef Pubmed Google scholar
[65]
Katzenmeyer A M, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Advanced Optical Materials, 2014, 2(8): 718–722
CrossRef Google scholar
[66]
Katzenmeyer A M, Aksyuk V, Centrone A. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Analytical Chemistry, 2013, 85(4): 1972–1979
CrossRef Pubmed Google scholar
[67]
Katzenmeyer A M, Holland G, Kjoller K, Centrone A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Analytical Chemistry, 2015, 87(6): 3154–3159
CrossRef Pubmed Google scholar
[68]
Williams C C, Wickramasinghe H K. Scanning thermal profiler. Applied Physics Letters, 1986, 49(23): 1587–1589
CrossRef Google scholar
[69]
Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329
CrossRef Google scholar
[70]
Sadat S, Tan A, Chua Y J, Reddy P. Nanoscale thermometry using point contact thermocouples. Nano Letters, 2010, 10(7): 2613–2617
CrossRef Pubmed Google scholar
[71]
Kim K, Jeong W, Lee W, Reddy P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257
CrossRef Pubmed Google scholar
[72]
Dai Z, King W P, Park K. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever. Nanotechnology, 2009, 20(9): 095301
CrossRef Pubmed Google scholar
[73]
Lee J, Beechem T, Wright T L, Nelson B A, Graham S, King W P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655
CrossRef Google scholar
[74]
Corbin E A, Park K, King W P. Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. Applied Physics Letters, 2009, 94(24): 243503
CrossRef Google scholar
[75]
Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics, 2010, 107(12): 124519
CrossRef Google scholar
[76]
Pechenezhskiy I V, Hong X, Nguyen G D, Dahl J E P, Carlson R M K, Wang F, Crommie M F. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111. Physical Review Letters, 2013, 111(12): 126101
CrossRef Pubmed Google scholar
[77]
Nguyen T Q, Wu J, Tolbert S H, Schwartz B J. Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. Advanced Materials, 2001, 13(8): 609–611
CrossRef Google scholar
[78]
Luo T, Chen G. Nanoscale heat transfer--from computation to experiment. Physical chemistry chemical physics : PCCP, 2013, 15(10): 3389–3412
CrossRef Pubmed Google scholar
[79]
Wang Y, Liu J, Zhou J, Yang R. Thermoelectric transport across nanoscale polymer–semiconductor–polymer junctions. Journal of Physical Chemistry C, 2013, 117(47): 24716–24725
CrossRef Google scholar
[80]
Merklin G T, He L, Griffiths P R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Applied Spectroscopy, 1999, 53(11): 1448–1453
CrossRef Google scholar
[81]
Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters, 1984, 44(7): 651–653
CrossRef Google scholar
[82]
Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophysical Journal, 1986, 49(1): 269–279
CrossRef Pubmed Google scholar
[83]
Labardi M, Gucciardi P G, Allegrini M, Pelosi C. Assessment of NSOM resolution on III–V semiconductor thin films. Applied Physics. A, Materials Science & Processing, 1998, 66(S1): S397–S402
CrossRef Google scholar
[84]
Isaacson M. Near-field scanning optical microscopy II. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena: JVST B, 1991, 9(6): 3103
CrossRef Google scholar
[85]
Goodson K E, Ashegh M. Near-field optical thermometry. Microscale Thermophysical Engineering, 1997, 1(3): 225–235
CrossRef Google scholar
[86]
Sasaki M, Tanaka K, Hane K. Cantilever probe integrated with light-emitting diode, waveguide, aperture, and photodiode for scanning near-field optical microscope. Japan Society of Applied Physics, 2000, 39(12B): 7150–7153
[87]
Michaelis J, Hettich C, Mlynek J, Sandoghdar V V. Optical microscopy using a single-molecule light source. Nature, 2000, 405(6784): 325–328
CrossRef Pubmed Google scholar
[88]
Shubeita G T, Sekatskii S K, Dietler G, Potapova I, Mews A, Basché T. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210(Pt 3): 274–278
CrossRef Pubmed Google scholar
[89]
Chevalier N, Nasse M J, Woehl J C, Reiss P, Bleuse J, Chandezon F, Huant S. CdSe single-nanoparticle based active tips for near-field optical microscopy. Nanotechnology, 2005, 16(4): 613–618
CrossRef Google scholar
[90]
Kim J, Song K B. Recent progress of nano-technology with NSOM. Micron (Oxford, England: 1993), 2007, 38(4): 409–426
CrossRef Pubmed Google scholar
[91]
Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43(4): 1248–1262
CrossRef Pubmed Google scholar
[92]
Hartschuh A. Tip-enhanced near-field optical microscopy. Angewandte Chemie (International ed. in English), 2008, 47(43): 8178–8191
CrossRef Pubmed Google scholar
[93]
Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser & Photonics Reviews, 2015, 9(6): 637–649
CrossRef Google scholar
[94]
Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331
CrossRef Pubmed Google scholar
[95]
Lucas M, Riedo E. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. The Review of Scientific Instruments, 2012, 83(6): 061101
CrossRef Pubmed Google scholar
[96]
Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Physical Review Letters, 2000, 85(14): 3029–3032
CrossRef Pubmed Google scholar
[97]
Yang T J, Lessard G A, Quake S R. An apertureless near-field microscope for fluorescence imaging. Applied Physics Letters, 2000, 76(3): 378–380
CrossRef Google scholar
[98]
Labardi M, Tikhomirov O, Ascoli C, Allegrini M. Balanced homodyning for apertureless near-field optical imaging. The Review of Scientific Instruments, 2008, 79(3): 033709
CrossRef Pubmed Google scholar
[99]
Gomez L, Bachelot R, Bouhelier A, Wiederrecht G P, Chang S H, Gray S K, Hua F, Jeon S, Rogers J A, Castro M E, Blaize S, Stefanon I, Lerondel G, Royer P. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America. B, Optical Physics, 2006, 23(5): 823
CrossRef Google scholar
[100]
Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. Journal of Microscopy, 2003, 210(Pt 3): 311–314
CrossRef Pubmed Google scholar
[101]
Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202(Pt 1): 77–83
CrossRef Pubmed Google scholar
[102]
Raschke M B, Lienau C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83(24): 5089–5091
CrossRef Google scholar
[103]
Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature, 1999, 399(6732): 134–137
CrossRef Google scholar
[104]
Knoll B, Keilmann F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 2000, 182(4–6): 321–328
CrossRef Google scholar
[105]
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light matter interaction at the nanometre scale. Nature, 2002, 418(6894): 159–162
CrossRef Pubmed Google scholar
[106]
Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 2006, 89(10): 101124
CrossRef Google scholar
[107]
Ocelic N. Quantitative near-field phonon-polariton spectroscopy. Dissertation for the Doctoral Degree. Munich: Technical University of Munich, 2007
[108]
Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications, 2014, 5: 3499
CrossRef Pubmed Google scholar
[109]
Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 2008, 16(2): 494–501
CrossRef Pubmed Google scholar
[110]
Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 2008, 8(11): 3766–3770
CrossRef Pubmed Google scholar
[111]
O’Callahan B T, Lewis W E, Jones A C, Raschke M B. Spectral frustration and spatial coherence in thermal near-field spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(24): 245446
CrossRef Google scholar
[112]
Babuty A, Joulain K, Chapuis P O, Greffet J J, De Wilde Y. Blackbody spectrum revisited in the near field. Physical Review Letters, 2013, 110(14): 146103
CrossRef Pubmed Google scholar
[113]
O’Callahan B T, Raschke M B. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging. APL Photonics, 2017, 2(2):021301
CrossRef Google scholar
[114]
Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291
CrossRef Google scholar
[115]
Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Letters, 2009, 9(7): 2553–2558
CrossRef Pubmed Google scholar
[116]
Taubner T, Keilmann F, Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Letters, 2004, 4(9): 1669–1672
CrossRef Google scholar
[117]
Zhang L M, Andreev G O, Fei Z, McLeod A S, Dominguez G, Thiemens M, Castro-Neto A H, Basov D N, Fogler M M. Near-field spectroscopy of silicon dioxide thin films. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(7): 075419
CrossRef Google scholar
[118]
Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Letters, 2011, 11(11): 4701–4705
CrossRef Pubmed Google scholar
[119]
Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77–81
Pubmed
[120]
Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Letters, 2013, 13(3): 1065–1072
CrossRef Pubmed Google scholar
[121]
Xu X G, Tanur A E, Walker G C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. Journal of Physical Chemistry A, 2013, 117(16): 3348–3354
CrossRef Pubmed Google scholar
[122]
Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8(11): 821–825
CrossRef Pubmed Google scholar
[123]
Berweger S, Nguyen D M, Muller E A, Bechtel H A, Perkins T T, Raschke M B. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. Journal of the American Chemical Society, 2013, 135(49): 18292–18295
CrossRef Pubmed Google scholar
[124]
Xu X G, Gilburd L, Walker G C. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105(26): 263104
CrossRef Google scholar
[125]
Yoxall E, Schnell M, Mastel S, Hillenbrand R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Optics Express, 2015, 23(10): 13358–13369
CrossRef Pubmed Google scholar
[126]
Amarie S, Ganz T, Keilmann F. Mid-infrared near-field spectroscopy. Optics Express, 2009, 17(24): 21794–21801
CrossRef Pubmed Google scholar
[127]
Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(4): 045404
CrossRef Google scholar
[128]
Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(5): 479–484
CrossRef Google scholar
[129]
Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl W W, Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology, 2012, 3: 312–323
CrossRef Pubmed Google scholar
[130]
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 2012, 12(8): 3973–3978
CrossRef Pubmed Google scholar
[131]
Xu X G, Rang M, Craig I M, Raschke M B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. The Journal of Physical Chemistry Letters, 2012, 3(13): 1836–1841
CrossRef Pubmed Google scholar
[132]
Govyadinov A A, Amenabar I, Huth F, Carney P S, Hillenbrand R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. The Journal of Physical Chemistry Letters, 2013, 4(9): 1526–1531
CrossRef Pubmed Google scholar
[133]
Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Communications, 2013, 4: 2890
CrossRef Pubmed Google scholar
[134]
McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens M H, Fogler M M, Basov D N. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085136
CrossRef Google scholar
[135]
Khatib O, Wood J D, McLeod A S, Goldflam M D, Wagner M, Damhorst G L, Koepke J C, Doidge G P, Rangarajan A, Bashir R, Pop E, Lyding J W, Thiemens M H, Keilmann F, Basov D N. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 2015, 9(8): 7968–7975
CrossRef Pubmed Google scholar
[136]
Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8: 14402
CrossRef Pubmed Google scholar
[137]
Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Materials, 2011, 10(5): 352–356
CrossRef Pubmed Google scholar
[138]
O’Callahan B T, Lewis W E, Möbius S, Stanley J C, Muller E A, Raschke M B. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation. Optics Express, 2015, 23(25): 32063–32074
CrossRef Pubmed Google scholar
[139]
Ikemoto Y, Ishikawa M, Nakashima S, Okamura H, Haruyama Y, Matsui S, Moriwaki T, Kinoshita T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Optics Communications, 2012, 285(8): 2212–2217
CrossRef Google scholar
[140]
Hermann P, Hoehl A, Patoka P, Huth F, Rühl E, Ulm G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Optics Express, 2013, 21(3): 2913–2919
CrossRef Pubmed Google scholar
[141]
Bechtel H A, Muller E A, Olmon R L, Martin M C, Raschke M B. Ultrabroadband infrared nanospectroscopic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7191–7196
CrossRef Pubmed Google scholar
[142]
Peragut F, Brubach J B, Roy P, de Wilde Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Applied Physics Letters, 2014, 104(25): 251118
CrossRef Google scholar
[143]
Jones A C, Raschke M B. Thermal infrared near-field spectroscopy. Nano Letters, 2012, 12(3): 1475–1481
CrossRef Pubmed Google scholar
[144]
Jones A C, O’Callahan B T, Yang H U, Raschke M B. The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science, 2013, 88(4): 349–392
CrossRef Google scholar
[145]
Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Physical Review Letters, 2013, 110(20): 203902
CrossRef Pubmed Google scholar
[146]
Walford J N, Porto J A, Carminati R, Greffet J J, Adam P M, Hudlet S, Bijeon J L, Stashkevich A, Royer P. Influence of tip modulation on image formation in scanning near-field optical microscopy. Journal of Applied Physics, 2001, 89(9): 5159–5169
CrossRef Google scholar
[147]
Joulain K, Ben-Abdallah P, Chapuis P O, de Wilde Y, Babuty A, Henkel C. Strong tip–sample coupling in thermal radiation scanning tunneling microscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 136: 1–15
CrossRef Google scholar
[148]
Jarzembski A, Park K. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 191: 67–74
CrossRef Google scholar
[149]
Cvitkovic A, Ocelic N, Hillenbrand R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 2007, 15(14): 8550–8565
CrossRef Pubmed Google scholar
[150]
Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Physical Review Letters, 2006, 97(6): 060801
CrossRef Pubmed Google scholar
[151]
Renger J, Grafström S, Eng L M, Hillenbrand R. Resonant light scattering by near-field-induced phonon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(7): 075410
CrossRef Google scholar
[152]
Fikri R, Barchiesi D, H’Dhili F, Bachelot R, Vial A, Royer P. Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method. Optics Communications, 2003, 221(1–3): 13–22
CrossRef Google scholar
[153]
Micic M, Klymyshyn N, Suh Y, Lu H. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. Journal of Physical Chemistry B, 2003, 107(7): 1574–1584
CrossRef Google scholar
[154]
Brehm M, Schliesser A, Cajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express, 2008, 16(15): 11203–11215
CrossRef Pubmed Google scholar
[155]
Sukhov S V. Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101(2–4): 111–122
CrossRef Pubmed Google scholar
[156]
Hatano H, Kawata S. Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images. Journal of Microscopy, 1999, 194(2–3): 230–234
CrossRef Pubmed Google scholar
[157]
Zhang Z M. Nano/microscale Heat Transfer, 5th ed. New York: McGraw Hill, 2007
[158]
Lee B J, Park K, Zhang Z M. Energy pathways in nanoscale thermal radiation. Applied Physics Letters, 2007, 91(15): 153101
CrossRef Google scholar
[159]
Francoeur M, Basu S, Petersen S J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express, 2011, 19(20): 18774–18788
CrossRef Pubmed Google scholar
[160]
Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82–85
Pubmed
[161]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
CrossRef Pubmed Google scholar
[162]
Gowen A A, O’Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 2007, 18(12): 590–598
CrossRef Google scholar
[163]
Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19(1): 010901
CrossRef Pubmed Google scholar
[164]
Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045412
CrossRef Google scholar
[165]
Wessel J. Surface-enhanced optical microscopy. Journal of the Optical Society of America. B, Optical Physics, 1985, 2(9): 1538
CrossRef Google scholar
[166]
Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136
CrossRef Google scholar
[167]
Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336
CrossRef Google scholar
[168]
Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 2000, 76(21): 3130–3132
CrossRef Google scholar
[169]
Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry, 2000, 68(12): 942–949
[170]
Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930
CrossRef Pubmed Google scholar
[171]
Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman Spectroscopy–its status, challenges and future directions. Chemical Physics Letters, 2009, 472(1–3): 1–13
CrossRef Google scholar
[172]
Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2015, 2(1): 9
CrossRef Google scholar
[173]
Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban J J, Pang Y, Gordon R, Bokor J, Salmeron M B, Ogletree D F, Ashby P, Cabrini S, Schuck P J. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters, 2011, 11(3): 1201–1207
CrossRef Pubmed Google scholar
[174]
Wickramasinghe H K, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano, 2014, 8(4): 3421–3426
CrossRef Pubmed Google scholar
[175]
Sackrow M, Stanciu C, Lieb M A, Meixner A J. Imaging nanometre-sized hot spots on smooth AU films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem, 2008, 9(2): 316–320
CrossRef Pubmed Google scholar
[176]
Tarun A, Hayazawa N, Motohashi M, Kawata S. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79(1): 013706
CrossRef Pubmed Google scholar
[177]
Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chemical Physics Letters, 2005, 410(1–3): 136–141
CrossRef Google scholar
[178]
Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem, 2006, 7(7): 1428–1430
CrossRef Pubmed Google scholar
[179]
Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J. Towards a specific characterisation of components on a cell surface-combined TERS-investigations of lipids and human cells. Journal of Raman Spectroscopy: JRS, 2009, 40(10): 1452–1457
CrossRef Google scholar
[180]
Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie (International ed. in English), 2008, 47(9): 1658–1661
CrossRef Pubmed Google scholar
[181]
Deckert-Gaudig T, Bailo E, Deckert V. Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Physical chemistry chemical physics: PCCP, 2009, 11(34): 7360–7362
CrossRef Pubmed Google scholar
[182]
Yeo B S, Amstad E, Schmid T, Stadler J, Zenobi R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small, 2009, 5(8): 952–960
CrossRef Pubmed Google scholar
[183]
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586
CrossRef Pubmed Google scholar
[184]
Wang X, Zhang D, Braun K, Egelhaaf H J, Brabec C J, Meixner A J. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Advanced Functional Materials, 2010, 20(3): 492–499
CrossRef Google scholar
[185]
Lee N, Hartschuh R D, Mehtani D, Kisliuk A, Maguire J F, Green M, Foster M D, Sokolov A P. High contrast scanning nano-Raman spectroscopy of silicon. Journal of Raman Spectroscopy: JRS, 2007, 38(6): 789–796
CrossRef Google scholar
[186]
Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180
CrossRef Google scholar
[187]
Hoffmann G G, de With G, Loos J. Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromolecular Symposia, 2008, 265(1): 1–11
CrossRef Google scholar
[188]
Neacsu C C, Dreyer J, Behr N, Raschke M B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 193406
CrossRef Google scholar
[189]
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498(7452): 82–86
CrossRef Pubmed Google scholar
[190]
Yeo B S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Applied Spectroscopy, 2006, 60(10): 1142–1147
CrossRef Pubmed Google scholar
[191]
Cui X, Zhang W, Yeo B S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15(13): 8309–8316
CrossRef Pubmed Google scholar
[192]
Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. Journal of Physical Chemistry C, 2007, 111(26): 9460–9464
CrossRef Google scholar
[193]
Hayazawa N, Yano T A, Kawata S. Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy: JRS, 2012, 43(9): 1177–1182
CrossRef Google scholar
[194]
Jahng J, Tork Ladani F, Khan R M, Potma E O. Photo-induced force for spectroscopic imaging at the nanoscale. Proceedings of the Society for Photo-Instrumentation Engineers, 2016, 9764: 97641J
CrossRef Google scholar
[195]
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances, 2016, 2(3): e1501571
CrossRef Pubmed Google scholar
[196]
Rajapaksa I, Uenal K, Wickramasinghe H K. Image force microscopy of molecular resonance: a microscope principle. Applied Physics Letters, 2010, 97(7): 073121
CrossRef Pubmed Google scholar
[197]
Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. Applied Physics Letters, 2011, 99(16): 161103
CrossRef Pubmed Google scholar
[198]
Huang F, Tamma V A, Mardy Z, Burdett J, Wickramasinghe H K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Scientific Reports, 2015, 5(1): 10610
CrossRef Pubmed Google scholar
[199]
Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 2015, 48(10): 2671–2679
CrossRef Pubmed Google scholar
[200]
Jahng J, Brocious J, Fishman D A, Yampolsky S, Nowak D, Huang F, Apkarian V A, Wickramasinghe H K, Potma E O. Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106(8): 083113
CrossRef Google scholar
[201]
Murdick R A, Morrison W, Nowak D, Albrecht T R, Jahng J, Park S. Photoinduced force microscopy : a technique for hyperspectral nanochemical mapping. Japanese Journal of Applied Physics, 2017, 56(8): 08LA04
[202]
Jahng J, Brocious J, Fishman D A, Huang F, Li X, Tamma V A, Wickramasinghe H K, Potma E O. Gradient and scattering forces in photoinduced force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(15): 155417
CrossRef Google scholar
[203]
Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O. Visualizing surface plasmon polaritons by their gradient force. Optics Letters, 2015, 40(21): 5058–5061
CrossRef Pubmed Google scholar
[204]
Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I. Photoinduced force mapping of plasmonic nanostructures. Nano Letters, 2016, 16(12): 7942–7949
CrossRef Pubmed Google scholar
[205]
Tamma V A, Huang F, Nowak D, Kumar Wickramasinghe H. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain. Applied Physics Letters, 2016, 108(23): 233107
CrossRef Google scholar
[206]
Ambrosio A, Devlin R C, Capasso F, Wilson W L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 2017, 4(4): 846–851
CrossRef Google scholar

Acknowledgments

This work was supported by the National Science Foundation (CBET-1605584) and the University of Utah Funding Incentive Seed Grant. A.J. also acknowledges financial supports from the University of Utah’s Sid Green Fellowship and the National Science Foundation Graduate Research Fellowship (No. 2016213209). C.S. acknowledges financial support from the University of Utah Undergraduate Research Opportunities Program (UROP).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1307 KB)

Accesses

Citations

Detail

Sections
Recommended

/