REVIEW ARTICLE

Magnetic confinement fusion: a brief review

  • Chuanjun HUANG , 1 ,
  • Laifeng LI 2
Expand
  • 1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 03 Jul 2017

Accepted date: 10 Oct 2017

Published date: 04 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasma-facing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.

Cite this article

Chuanjun HUANG , Laifeng LI . Magnetic confinement fusion: a brief review[J]. Frontiers in Energy, 2018 , 12(2) : 305 -313 . DOI: 10.1007/s11708-018-0539-1

Acknowledgments

This work was financially supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCPQN201501), the National Magnetic Confinement Fusion Science Program (Grant No. 2015GB121001), and the National Natural Science Foundation of China (Grant Nos. 51427806, 51401224, and 51577185).
1
Piera M. Sustainability issues in the development of Nuclear Fission energy. Energy Conversion and Management, 2010, 51(5): 938–946

DOI

2
Horvath A, Rachlew E. Nuclear power in the 21st century: challenges and possibilities. Ambio, 2016, 45(Suppl 1): 38–49

DOI PMID

3
Rogner H H. World energy demand and supply. IAEA, Vienna, Austria, 2012

4
Betti R, Hurricane O A. Inertial-confinement fusion with lasers. Nature Physics, 2016, 12(5): 435–448

DOI

5
Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D. Direct-drive inertial confinement fusion: a review. Physics of Plasmas, 2015, 22(11): 139–477

DOI

6
Stacey W M. An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Fusion, Germany: Wiley-VCH, 2010

7
Burdakov A V, Ivanov A A, Kruglyakov E P. Modern magnetic mirrors and their fusion prospects. Plasma Physics and Controlled Fusion, 2010, 52(12): 124026

DOI

8
Fowler T K, Moir R W, Simonen T C. A new simpler way to obtain high fusion power gain in tandem mirrors. Nuclear Fusion, 2017, 57(5): 056014

DOI

9
Clery D. Twisted logic. Science, 2015, 350(6259): 369–371

DOI PMID

10
Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch H S, Wendelstein 7-X team. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100000. Nature Communications, 2016, 7: 13493

DOI PMID

11
Bosch H S, Brakel R, Braeuer T, Bykov V, Eeten P, Feist J H, Fullenbach F, Gasparotto M, Grote H, Klinger T, Laqua H, Nagel M, Naujoks D, Otte M, Risse K, Rummel T, Schacht J, Spring A, Pedersen T S, Vilbrandt R, Wegener L, Werner A, Wolf R C, Baldzuhn J, Biedermann C, Braune H, Buihenn R, Hirsch M, Hofel U, Kanuer J, Kornejew P, Marsen S, Stange T, Mora H T, and W7-X team. Final integration, commissioning and start of the Wendelstein 7-X stellarator operation. Nuclear Fusion, 2017, 57(11): 116015

DOI

12
Brotankova J, Cadwallader L C, Costley A E. Magnetic Fusion Technology Lecture Notes in Energy. New York: Springer, 2013

13
Ongena J, Koch R, Wolf R, Zohm H. Magnetic-confinement fusion. Nature Physics, 2016, 12(5): 398–410

DOI

14
Butler D. ITER keeps eye on prize. Nature, 2013, 502(7471): 282–283

DOI PMID

15
Clery D. The new shape of fusion. Science, 2015, 348(6237): 854

DOI PMID

16
Chapman B E, Almagri A F, Anderson J K, Brower D L, Caspary K J, Clayton D J, Craig D, Hartog D J D, Ding W X, Ennis D A, Fiksel G, Gangadhara S, Kumar S, Magee R M, O’Connell R, Parke E, Prager S C, Reusch J A, Sarff J S, Stephens H D, Yang Y M. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma. Plasma Physics and Controlled Fusion, 2010, 52(12): 124048

DOI

17
Yamada H, Kasada R, Ozaki A, Sakamoto R, Sakamoto Y, Taken-aga H, Tanaka T, Tanigawa H, Okano K, Tobita K, Kaneko O, Ushigusa K. Japanese endeavors to establish technological bases for DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1318–1325

DOI

18
Brown T, Titus P, Brooks A, Zhang H, Neilson H, Im K, Kim K. Results of availability imposed configuration details developed for K-DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1091–1095

DOI

19
Federici G, Kemp R, Ward D, Bachmann C, Franke T, Gonzalez S, Lowry C, Gadomska M, Harman J, Meszaros B, Morlock C, Romanelli F, Wenninger R. Overview of EU DEMO design and R&D activities. Fusion Engineering and Design, 2014, 89(7–8): 882–889

DOI

20
Zheng J, Liu X, Song Y, Wan Y, Li J, Wu S, Wan B, Ye M, Wei J, Xu W, Liu S, Weng P, Lu K, Luo Z. Concept design of CFETR superconducting magnet system based on different maintenance ports. Fusion Engineering and Design, 2013, 88(11): 2960–2966

DOI

21
Buckingham R, Loving A. Remote-handling challenges in fusion research and beyond. Nature Physics, 2016, 12(5): 391–393

DOI

22
Bruzzone P. Superconductivity and fusion energy-the inseparable companions. Superconductor Science and Technology, 2015, 28(2): 708–718

DOI

23
Pan X F, Feng Y, Yan G, Cui L J, Chen C, Zhang Y, Wu Z X, Liu X H, Zhang P X, Bai Z M, Zhao Y, Li L F. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment. Superconductor Science and Technology, 2016, 29(1): 015008

DOI

24
Fietz W H, Barth C, Drotziger S, Goldacker W, Heller R, Schlachter S I, Weiss K P. Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Engineering and Design, 2013, 88(6–8): 440–445

DOI

25
Uglietti D, Bykovsky N, Wesche R, Bruzzone P. Development of HTS conductors for fusion magnets. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1–6

DOI

26
Qin J G, Wu Y, Li J G, Dai C, Liu F. Manufacture and test of Bi-2212 cable-in-conduit conductor. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1–5

27
Zhou T, Lu K, Ran Q, Ding K, Feng H, Wu H, Liu C, Song Y, Niu E, Bauer P, Devred A. Mock-up qualification and prototype manufacture for ITER current leads. Fusion Engineering and Design, 2015, 96–97: 388–391

DOI

28
Nishimura A. Need for development of higher strength cryogenic structural materials for fusion magnet. Advances in Cryogenic Engineering, 2014, 60: 333–339

29
Shen T, Li P, Jiang J, Cooley L, Tompkins J, McRae D, Walsh R. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications. Superconductor Science and Technology, 2015, 28(6): 065002

DOI

30
Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88(6–8): 472–482

DOI

31
Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12–19

DOI

32
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241–267

DOI

33
Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. Silicon carbide composites as fusion power reactor structural materials. Journal of Nuclear Materials, 2011, 417(1–3): 330–339

DOI

34
Huang Q. Status and improvement of CLAM for nuclear application. Nuclear Fusion, 2017, 57: 086042

DOI

35
Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W. Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386(5): 411–417

DOI

36
Kondo T. IFMIF, its facility concept and technology. Journal of Nuclear Materials, 1998, 258(4): 47–55

DOI

37
Knaster J, Chel S, Fischer U, Groeschel F, Heidinger R, Ibarra A, Micciche G, Möslang A, Sugimoto M, Wakai E. IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453(1–3): 115–119

DOI

Outlines

/