Magnetic confinement fusion: a brief review

Chuanjun HUANG, Laifeng LI

PDF(210 KB)
PDF(210 KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (2) : 305-313. DOI: 10.1007/s11708-018-0539-1
REVIEW ARTICLE
REVIEW ARTICLE

Magnetic confinement fusion: a brief review

Author information +
History +

Abstract

Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasma-facing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.

Keywords

fusion energy / magnetic confinement / tokamak / structural material / superconducting magnet

Cite this article

Download citation ▾
Chuanjun HUANG, Laifeng LI. Magnetic confinement fusion: a brief review. Front. Energy, 2018, 12(2): 305‒313 https://doi.org/10.1007/s11708-018-0539-1

References

[1]
Piera M. Sustainability issues in the development of Nuclear Fission energy. Energy Conversion and Management, 2010, 51(5): 938–946
CrossRef Google scholar
[2]
Horvath A, Rachlew E. Nuclear power in the 21st century: challenges and possibilities. Ambio, 2016, 45(Suppl 1): 38–49
CrossRef Pubmed Google scholar
[3]
Rogner H H. World energy demand and supply. IAEA, Vienna, Austria, 2012
[4]
Betti R, Hurricane O A. Inertial-confinement fusion with lasers. Nature Physics, 2016, 12(5): 435–448
CrossRef Google scholar
[5]
Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D. Direct-drive inertial confinement fusion: a review. Physics of Plasmas, 2015, 22(11): 139–477
CrossRef Google scholar
[6]
Stacey W M. An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Fusion, Germany: Wiley-VCH, 2010
[7]
Burdakov A V, Ivanov A A, Kruglyakov E P. Modern magnetic mirrors and their fusion prospects. Plasma Physics and Controlled Fusion, 2010, 52(12): 124026
CrossRef Google scholar
[8]
Fowler T K, Moir R W, Simonen T C. A new simpler way to obtain high fusion power gain in tandem mirrors. Nuclear Fusion, 2017, 57(5): 056014
CrossRef Google scholar
[9]
Clery D. Twisted logic. Science, 2015, 350(6259): 369–371
CrossRef Pubmed Google scholar
[10]
Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch H S, Wendelstein 7-X team. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100000. Nature Communications, 2016, 7: 13493
CrossRef Pubmed Google scholar
[11]
Bosch H S, Brakel R, Braeuer T, Bykov V, Eeten P, Feist J H, Fullenbach F, Gasparotto M, Grote H, Klinger T, Laqua H, Nagel M, Naujoks D, Otte M, Risse K, Rummel T, Schacht J, Spring A, Pedersen T S, Vilbrandt R, Wegener L, Werner A, Wolf R C, Baldzuhn J, Biedermann C, Braune H, Buihenn R, Hirsch M, Hofel U, Kanuer J, Kornejew P, Marsen S, Stange T, Mora H T, and W7-X team. Final integration, commissioning and start of the Wendelstein 7-X stellarator operation. Nuclear Fusion, 2017, 57(11): 116015
CrossRef Google scholar
[12]
Brotankova J, Cadwallader L C, Costley A E. Magnetic Fusion Technology Lecture Notes in Energy. New York: Springer, 2013
[13]
Ongena J, Koch R, Wolf R, Zohm H. Magnetic-confinement fusion. Nature Physics, 2016, 12(5): 398–410
CrossRef Google scholar
[14]
Butler D. ITER keeps eye on prize. Nature, 2013, 502(7471): 282–283
CrossRef Pubmed Google scholar
[15]
Clery D. The new shape of fusion. Science, 2015, 348(6237): 854
CrossRef Pubmed Google scholar
[16]
Chapman B E, Almagri A F, Anderson J K, Brower D L, Caspary K J, Clayton D J, Craig D, Hartog D J D, Ding W X, Ennis D A, Fiksel G, Gangadhara S, Kumar S, Magee R M, O’Connell R, Parke E, Prager S C, Reusch J A, Sarff J S, Stephens H D, Yang Y M. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma. Plasma Physics and Controlled Fusion, 2010, 52(12): 124048
CrossRef Google scholar
[17]
Yamada H, Kasada R, Ozaki A, Sakamoto R, Sakamoto Y, Taken-aga H, Tanaka T, Tanigawa H, Okano K, Tobita K, Kaneko O, Ushigusa K. Japanese endeavors to establish technological bases for DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1318–1325
CrossRef Google scholar
[18]
Brown T, Titus P, Brooks A, Zhang H, Neilson H, Im K, Kim K. Results of availability imposed configuration details developed for K-DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1091–1095
CrossRef Google scholar
[19]
Federici G, Kemp R, Ward D, Bachmann C, Franke T, Gonzalez S, Lowry C, Gadomska M, Harman J, Meszaros B, Morlock C, Romanelli F, Wenninger R. Overview of EU DEMO design and R&D activities. Fusion Engineering and Design, 2014, 89(7–8): 882–889
CrossRef Google scholar
[20]
Zheng J, Liu X, Song Y, Wan Y, Li J, Wu S, Wan B, Ye M, Wei J, Xu W, Liu S, Weng P, Lu K, Luo Z. Concept design of CFETR superconducting magnet system based on different maintenance ports. Fusion Engineering and Design, 2013, 88(11): 2960–2966
CrossRef Google scholar
[21]
Buckingham R, Loving A. Remote-handling challenges in fusion research and beyond. Nature Physics, 2016, 12(5): 391–393
CrossRef Google scholar
[22]
Bruzzone P. Superconductivity and fusion energy-the inseparable companions. Superconductor Science and Technology, 2015, 28(2): 708–718
CrossRef Google scholar
[23]
Pan X F, Feng Y, Yan G, Cui L J, Chen C, Zhang Y, Wu Z X, Liu X H, Zhang P X, Bai Z M, Zhao Y, Li L F. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment. Superconductor Science and Technology, 2016, 29(1): 015008
CrossRef Google scholar
[24]
Fietz W H, Barth C, Drotziger S, Goldacker W, Heller R, Schlachter S I, Weiss K P. Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Engineering and Design, 2013, 88(6–8): 440–445
CrossRef Google scholar
[25]
Uglietti D, Bykovsky N, Wesche R, Bruzzone P. Development of HTS conductors for fusion magnets. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1–6
CrossRef Google scholar
[26]
Qin J G, Wu Y, Li J G, Dai C, Liu F. Manufacture and test of Bi-2212 cable-in-conduit conductor. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1–5
[27]
Zhou T, Lu K, Ran Q, Ding K, Feng H, Wu H, Liu C, Song Y, Niu E, Bauer P, Devred A. Mock-up qualification and prototype manufacture for ITER current leads. Fusion Engineering and Design, 2015, 96–97: 388–391
CrossRef Google scholar
[28]
Nishimura A. Need for development of higher strength cryogenic structural materials for fusion magnet. Advances in Cryogenic Engineering, 2014, 60: 333–339
[29]
Shen T, Li P, Jiang J, Cooley L, Tompkins J, McRae D, Walsh R. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications. Superconductor Science and Technology, 2015, 28(6): 065002
CrossRef Google scholar
[30]
Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88(6–8): 472–482
CrossRef Google scholar
[31]
Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12–19
CrossRef Google scholar
[32]
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241–267
CrossRef Google scholar
[33]
Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. Silicon carbide composites as fusion power reactor structural materials. Journal of Nuclear Materials, 2011, 417(1–3): 330–339
CrossRef Google scholar
[34]
Huang Q. Status and improvement of CLAM for nuclear application. Nuclear Fusion, 2017, 57: 086042
CrossRef Google scholar
[35]
Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W. Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386(5): 411–417
CrossRef Google scholar
[36]
Kondo T. IFMIF, its facility concept and technology. Journal of Nuclear Materials, 1998, 258(4): 47–55
CrossRef Google scholar
[37]
Knaster J, Chel S, Fischer U, Groeschel F, Heidinger R, Ibarra A, Micciche G, Möslang A, Sugimoto M, Wakai E. IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453(1–3): 115–119
CrossRef Google scholar

Acknowledgments

This work was financially supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCPQN201501), the National Magnetic Confinement Fusion Science Program (Grant No. 2015GB121001), and the National Natural Science Foundation of China (Grant Nos. 51427806, 51401224, and 51577185).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/