RESEARCH ARTICLE

Numerical study of a hybrid absorption-compressionhigh temperature heat pump for industrial waste heat recovery

  • Zhiwei MA ,
  • Huashan BAO ,
  • AnthonyPaul ROSKILLY
Expand
  • Sir Joseph Swan Centre for EnergyResearch, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Received date: 14 Jun 2017

Accepted date: 20 Sep 2017

Published date: 14 Dec 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbHGermany

Abstract

The present paper aims at exploring a hybrid absorption-compressionheat pump (HAC-HP) to upgrade and recover the industrial waste heatin the temperature range of 60°C–120°C. The new HAC-HPsystem proposed has a condenser, an evaporator, and one more solutionpump, compared to the conventional HAC-HP system, to allow flexibleutilization of energy sources of electricity and waste heat. In thesystem proposed, the pressure of ammonia-water vapor desorbed in thegenerator can be elevated by two routes; one is via the compressionof compressor while the other is via the condenser, the solution pump,and the evaporator. The results show that more ammonia-water vaporflowing through the compressor leads to a substantial higher energyefficiency due to the higher quality of electricity, however, onlya slight change on the system exergy efficiency is noticed. The temperaturelift increases with the increasing system recirculation flow ratio,however, the system energy and exergy efficiencies drop towards zero.The suitable operation ranges of HAC-HP are recommended for the wasteheat at 60°C, 80°C, 100°C, and 120°C. The recirculationflow ratio should be lower than 9, 6, 5, and 4 respectively for thesewaste heat, while the temperature lifts are in the range of 9.8°C–27.7°C, 14.9°C–44.1 °C, 24.4°C–64.1°C,and 40.7°C–85.7°C, respectively, and the system energyefficiency are 0.35–0.93, 0.32–0.90, 0.25–0.85,and 0.14–0.76.

Cite this article

Zhiwei MA , Huashan BAO , AnthonyPaul ROSKILLY . Numerical study of a hybrid absorption-compressionhigh temperature heat pump for industrial waste heat recovery[J]. Frontiers in Energy, 2017 , 11(4) : 503 -509 . DOI: 10.1007/s11708-017-0515-1

Acknowledgements

This work was supported by the Heat-STRESSproject (EP/N02155X/1), funded by the Engineering and Physical ScienceResearch Council of UK.
1
Vélez F, Segovia  J J, Martin  M C, Antolin  G, Chejne F ,  Quijano A . A technical, economical and market reviewof organic Rankine cycles for the conversion of low grade heat forpower generation. Renewable & SustainableEnergy Reviews, 2012, 16(6): 4175–4189

DOI

2
Zhai X Q, Qu  M, Li Y ,  Wang R Z . A review for research and new design options of solar absorption cooling systems. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4416–4423

DOI

3
Li T X, Wang  R Z, Li  H. Progress in the development of solid-gas sorption refrigerationthermodynamic cycle driven by low-grade thermal energy. Progress in Energy and Combustion Science, 2014, 40: 1–58

DOI

4
Oluleye G, Smith  R, Jobson M . Modelling and screening heat pump optionsfor the exploitation of low grade waste heat in process site. Applied Energy, 2016, 169: 267–286

DOI

5
Chua K J, Chou  S K, Yang  W M. Advances in heat pump systems: a review. Applied Energy, 2010, 87(12): 3611–3624

DOI

6
Brunin O, Feidt  M, Hivet B . Comparison of the working domains ofsome compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration, 1997, 20(5): 308–318

DOI

7
Hultén M, Berntsson  T. The compression/absorption cycle—influence of some major parameterson COP and a comparison with the compression cycle. International Journal of Refrigeration, 1999, 22(2): 91–106

DOI

8
Minea V, Chiriac  F. Hybrid absorption heat pump with ammonia/water mixture—somedesign guidelines and district heating application. International Journal of Refrigeration, 2006, 29(7): 1080–1091

DOI

9
Kim J, Park  S R, Baik  Y J, Chang  K C, Ra  H S, Kim  M, Kim C . Experimental study of operating characteristics of compression/absorption high-temperaturehybrid heat pump using waste heat. Renewable Energy, 2013, 54: 13–19

DOI

10
Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . On the development of high temperature ammonia-waterhybrid absorption-compression heat pumps. International Journal of Refrigeration, 2015, 58: 79–89

DOI

11
Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . Exergoeconomic optimization of an ammonia-water hybridabsorption-compression heat pump for heat supply in a spray-dryingfacility. International Journal of EnvironmentalEngineering, 2015, 6: 195–211

12
Bourouis M, Nogues  M, Boer D ,  Coronas A . Industrial heat recovery by absorption/compression heat pump usingTFE-H2O-TEGDME working mixture. Applied Thermal Engineering, 2000, 20(4): 355–369

DOI

13
El-sayed Y M, Tribus  M. Thermodynamic properties of water-ammonia mixtures theoretical implementation foruse in power cycles analysis.  American Society of Mechanical Engineers, Advanced Energy Systems Division(Publication), 1985, 1: 89–95

14
Ziegler B, Trepp  C. Equation of state for ammonia-water mixtures. International Journal of Refrigeration, 1984, 7(2): 101–106

DOI

15
Herold K E, Radermacher  R, Klein S A . Absorption Chillers and HeatPumps. Boca Raton: CRC Press, 1996

16
Wu W, Wang  B L, Shi  W X, Li  X T. Performance improvement of ammonia/absorbent air source absorptionheat pump in cold regions. Building Services Engineering Research and Technology, 2014, 35(5): 451–464

DOI

17
Kandlikar S. A new absorber heat recovery cycle to improve COP ofaqua-ammonia absorption refrigeration system. Ashrae Transactions, 1982, 88: 141–158

Outlines

/