Numerical study of a hybrid absorption-compressionhigh temperature heat pump for industrial waste heat recovery

Zhiwei MA , Huashan BAO , AnthonyPaul ROSKILLY

Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 503 -509.

PDF (339KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 503 -509. DOI: 10.1007/s11708-017-0515-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Numerical study of a hybrid absorption-compressionhigh temperature heat pump for industrial waste heat recovery

Author information +
History +
PDF (339KB)

Abstract

The present paper aims at exploring a hybrid absorption-compressionheat pump (HAC-HP) to upgrade and recover the industrial waste heatin the temperature range of 60°C–120°C. The new HAC-HPsystem proposed has a condenser, an evaporator, and one more solutionpump, compared to the conventional HAC-HP system, to allow flexibleutilization of energy sources of electricity and waste heat. In thesystem proposed, the pressure of ammonia-water vapor desorbed in thegenerator can be elevated by two routes; one is via the compressionof compressor while the other is via the condenser, the solution pump,and the evaporator. The results show that more ammonia-water vaporflowing through the compressor leads to a substantial higher energyefficiency due to the higher quality of electricity, however, onlya slight change on the system exergy efficiency is noticed. The temperaturelift increases with the increasing system recirculation flow ratio,however, the system energy and exergy efficiencies drop towards zero.The suitable operation ranges of HAC-HP are recommended for the wasteheat at 60°C, 80°C, 100°C, and 120°C. The recirculationflow ratio should be lower than 9, 6, 5, and 4 respectively for thesewaste heat, while the temperature lifts are in the range of 9.8°C–27.7°C, 14.9°C–44.1 °C, 24.4°C–64.1°C,and 40.7°C–85.7°C, respectively, and the system energyefficiency are 0.35–0.93, 0.32–0.90, 0.25–0.85,and 0.14–0.76.

Keywords

absorption compression / hightemperature heat pump / efficiency / industrial waste heat / thermodynamic analysis

Cite this article

Download citation ▾
Zhiwei MA, Huashan BAO, AnthonyPaul ROSKILLY. Numerical study of a hybrid absorption-compressionhigh temperature heat pump for industrial waste heat recovery. Front. Energy, 2017, 11(4): 503-509 DOI:10.1007/s11708-017-0515-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vélez FSegovia  J JMartin  M CAntolin  GChejne F Quijano A. A technical, economical and market reviewof organic Rankine cycles for the conversion of low grade heat forpower generation. Renewable & SustainableEnergy Reviews201216(6): 4175–4189

[2]

Zhai X QQu  MLi Y Wang R Z. A review for research and new design options of solar absorption cooling systems. Renewable & Sustainable Energy Reviews201115(9): 4416–4423

[3]

Li T XWang  R ZLi  H. Progress in the development of solid-gas sorption refrigerationthermodynamic cycle driven by low-grade thermal energy. Progress in Energy and Combustion Science201440: 1–58

[4]

Oluleye GSmith  RJobson M. Modelling and screening heat pump optionsfor the exploitation of low grade waste heat in process site. Applied Energy2016169: 267–286

[5]

Chua K JChou  S KYang  W M. Advances in heat pump systems: a review. Applied Energy201087(12): 3611–3624

[6]

Brunin OFeidt  MHivet B. Comparison of the working domains ofsome compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration199720(5): 308–318

[7]

Hultén MBerntsson  T. The compression/absorption cycle—influence of some major parameterson COP and a comparison with the compression cycle. International Journal of Refrigeration199922(2): 91–106

[8]

Minea VChiriac  F. Hybrid absorption heat pump with ammonia/water mixture—somedesign guidelines and district heating application. International Journal of Refrigeration200629(7): 1080–1091

[9]

Kim JPark  S RBaik  Y JChang  K CRa  H SKim  MKim C. Experimental study of operating characteristics of compression/absorption high-temperaturehybrid heat pump using waste heat. Renewable Energy201354: 13–19

[10]

Jensen J KMarkussen  W BReinholdt  LElmegaard B. On the development of high temperature ammonia-waterhybrid absorption-compression heat pumps. International Journal of Refrigeration201558: 79–89

[11]

Jensen J KMarkussen  W BReinholdt  LElmegaard B. Exergoeconomic optimization of an ammonia-water hybridabsorption-compression heat pump for heat supply in a spray-dryingfacility. International Journal of EnvironmentalEngineering20156: 195–211

[12]

Bourouis MNogues  MBoer D Coronas A. Industrial heat recovery by absorption/compression heat pump usingTFE-H2O-TEGDME working mixture. Applied Thermal Engineering200020(4): 355–369

[13]

El-sayed Y MTribus  M. Thermodynamic properties of water-ammonia mixtures theoretical implementation foruse in power cycles analysis.  American Society of Mechanical Engineers, Advanced Energy Systems Division(Publication), 19851: 89–95

[14]

Ziegler BTrepp  C. Equation of state for ammonia-water mixtures. International Journal of Refrigeration19847(2): 101–106

[15]

Herold K ERadermacher  RKlein S A. Absorption Chillers and HeatPumps. Boca Raton: CRC Press1996

[16]

Wu WWang  B LShi  W XLi  X T. Performance improvement of ammonia/absorbent air source absorptionheat pump in cold regions. Building Services Engineering Research and Technology201435(5): 451–464

[17]

Kandlikar S. A new absorber heat recovery cycle to improve COP ofaqua-ammonia absorption refrigeration system. Ashrae Transactions198288: 141–158

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (339KB)

4078

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/