RESEARCH ARTICLE

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand

  • Nitesh Ganesh BHAT ,
  • B. Rajanarayan PRUSTY ,
  • Debashisha JENA
Expand
  • Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India

Received date: 23 Nov 2016

Accepted date: 16 Jan 2017

Published date: 01 Jun 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation.

Cite this article

Nitesh Ganesh BHAT , B. Rajanarayan PRUSTY , Debashisha JENA . Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand[J]. Frontiers in Energy, 2017 , 11(2) : 184 -196 . DOI: 10.1007/s11708-017-0465-7

1
Borkowska B. Probabilistic load flow. IEEE Transactions on Power Apparatus and Systems, 1974, PAS-93(3): 752–759

DOI

2
Prusty B R, Jena  D. A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach. Renewable & Sustainable Energy Reviews, 2017, 69: 1286–1302

DOI

3
Zhang P, Lee  S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion. IEEE Transactions on Power Systems, 2004, 19(1): 676–682

DOI

4
Usaola J. Probabilistic load flow in systems with wind generation. IET Generation, Transmission & Distribution, 2009, 3(12): 1031–1041

DOI

5
Fan M, Vittal  V, Heydt G T ,  Ayyanar R . Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Transactions on Power Systems, 2012, 27(4): 2251–2261

DOI

6
Villanueva D, Feijóo  A E, Pazos  J L. An analytical method to solve the probabilistic load flow considering load demand correlation using the DC load flow. Electric Power Systems Research, 2014, 110: 1–8

DOI

7
Prusty B R, Jena  D. Modeling of correlated photovoltaic generations and load demands in probabilistic load flow. In: 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control (INDICON 2015), New Delhi, 2015, 1–6

8
Prusty B R, Jena  D. Combined cumulant and Gaussian mixture approximation for correlated probabilistic load flow studies: a new approach. CSEE Journal of Power and Energy Systems, 2016, 2(2): 71–78

DOI

9
Conti S, Raiti  S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators. Solar Energy, 2007, 81(12): 1473–1481

DOI

10
Ruiz-Rodriguez F J ,  Hernández J C ,  Jurado F . Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion. Electric Power Systems Research, 2012, 89: 129–138

DOI

11
Carpinelli G, Caramia  P, Varilone P . Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems. Renewable Energy, 2015, 76: 283–295

DOI

12
Vlachogiannis J G . Probabilistic constrained load flow considering integration of wind power generation and electric vehicles. IEEE Transactions on Power Systems, 2009, 24(4): 1808–1817

DOI

13
Pashajavid E, Golkar  M A. Charging of plug-in electric vehicles: stochastic modelling of load demand within domestic grids. In: Proceedings of 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, 2012, 535–539

14
Kong S, Cho  H C, Lee  J U, Joo  S K. Probabilistic modeling of electric vehicle charging load for probabilistic load flow. In: 2012 IEEE Vehicle Power and Propulsion Conference (VPPC 2012), Seoul, Republic of Korea, 2012, 1010–1013

15
Wu C, Wen  F, Lou Y ,  Xin F. Probabilistic load flow analysis of photovoltaic generation system with plug-in electric vehicles. International Journal of Electrical Power & Energy Systems, 2015, 64: 1221–1228

DOI

16
Papadopoulos P, Skarvelis-Kazakos  S, Grau I ,  Awad B, Cipcigan  L M, Jenkins  N. Impact of residential charging of electric vehicles on distribution networks, a probabilistic approach. In: Proceedings of 2010 45th International Universities’ Power Engineering Conference (UPEC), Cardiff, Wales, 2010, 1–5

17
Tehrani N H, Wang  P. Probabilistic estimation of plug-in electric vehicles charging load profile. Electric Power Systems Research, 2015, 124: 133–143

DOI

18
Li G, Zhang  X P. Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations. IEEE Transactions on Smart Grid, 2012, 3(1): 492–499

DOI

19
Dimitrovski A, Ackovski  R. Probabilistic load flow in radial distribution networks. In: Proceedings of the 1996 14th IEEE Transmission and Distribution Conference, Los Angeles, CA, 1996, 102–107

20
Golkar M A. A new probabilistic load-flow method for radial distribution networks. European Transactions on Electrical Power Systems, 2003, 13(3): 167–172

DOI

21
Hoese A, Garcés  F. Stochastic correlated simulation: an extension of the cumulant method to include time-dependent energy sources. International Journal of Electrical Power & Energy Systems, 1999, 21(1): 13–22

DOI

22
Cai D, Shi  D, Chen J . Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling. IET Generation, Transmission & Distribution, 2013, 7(5): 474–482 doi:10.1049/iet-gtd.2012.0405

23
Pai M A, Chatterjee  D. Computer Techniques in Power System Analysis. 3rd ed. Noida: McGraw Hill Education (India) Private Limited, 2014

24
Electrical Engineering, University of Washington. Power systems test case archive, 2016-09-26. http://www2.ee.washington.edu/research/pstca

25
Kumar D, Agrawal  S. Load flow solution for meshed distribution networks. Dissertation for the Bachelor’s Degree. Rourkela: National Institute of Technology Rourkela, 2013

Outlines

/