Statistical analysis of recombination properties of the boron-oxygen defect in p-type Czochralski silicon
Received date: 22 Jul 2016
Accepted date: 19 Oct 2016
Published date: 16 Nov 2016
Copyright
This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to investigate two important aspects of carrier lifetime analysis: ① the methods used to extract the recombination lifetime associated with the defect and ② the underlying assumption that carrier injection does not affect lifetime components unrelated to the defect. The results demonstrate that the capture cross section ratio associated with the donor level of the BO defect (k1) vary widely depending on the specific method used to extract the defect-specific recombination lifetime. For the data set studied here, it was also found that illumination used to form the defect caused minor, but statistically significant changes in the surface passivation used. This violation of the fundamental assumption could be accounted for by applying appropriate curve fitting methods, resulting in an improved estimate of k1 (11.90±0.45) for the fully formed BO defect when modeled using the donor level alone. Illumination also appeared to cause a minor, apparently injection-independent change in lifetime that could not be attributed to the donor level of the BO defect alone and is likely related to the acceptor level of the BO defect. While specific to the BO defect, this study has implications for the use of lifetime spectroscopy to study other carrier induced defects. Finally, we demonstrate the use of a unit-less regression goodness-of-fit metric for lifetime data that is easy to interpret and accounts for repeatability error.
Nitin NAMPALLI , Tsun Hang FUNG , Stuart WENHAM , Brett HALLAM , Malcolm ABBOTT . Statistical analysis of recombination properties of the boron-oxygen defect in p-type Czochralski silicon[J]. Frontiers in Energy, 2017 , 11(1) : 4 -22 . DOI: 10.1007/s11708-016-0442-6
1 |
Pingel S, Koshnicharov D, Frank O, Geipel T, Zemen Y, Striner B, Berghold J. Initial degradation of industrial silicon solar cells in solar panels. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference. Valencia, Spain, 2010, 4027–4032
|
2 |
Shockley W, Read W T. Statistics of the recombination of holes and electrons. Physical Review, 1952, 87(5): 835–842
|
3 |
Mchedlidze T, Weber J. Direct detection of carrier traps in Si solar cells after light-induced degradation. physica status solidi—Rapid Research Letters, 2015, 9(2): 108–110
|
4 |
Schmidt J, Cuevas A. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon. Journal of Applied Physics, 1999, 86(6): 3175–3179
|
5 |
Bothe K, Schmidt J, Hezel R. Effective reduction of the metastable defect concentration in boron-doped Czochralski silicon for solar cells. In: Conference Record of the 29th IEEE Photovoltaic Specialists Conference. New Orleans, USA, 2002, 194–197
|
6 |
Rein S, Glunz S W. Electronic properties of the metastable defect in boron-doped Czochralski silicon: unambiguous determination by advanced lifetime spectroscopy. Applied Physics Letters, 2003, 82(7): 1054–1056
|
7 |
Bothe K, Schmidt J. Electronically activated boron-oxygen-related recombination centers in crystallinesilicon. Journal of Applied Physics, 2006, 99(1): 013701
|
8 |
Rougieux F E, Forster M, MacDonald D, Cuevas A, Lim B, Schmidt J. Recombination activity and impact of the boron-oxygen-related defect in compensated n-type silicon. IEEE Journal of Photovoltaics, 2011, 1(1): 54–58
|
9 |
Voronkov V V, Falster R, Bothe K, Lim B, Schmidt J. Lifetime-degrading boron-oxygen centres in p-type and n-type compensated silicon. Journal of Applied Physics, 2011, 110(6): 063515
|
10 |
Wang X, Juhl M, Abbott M, Hameiri Z, Yao Y, Lennon A. Use of QSSPC and QSSPL to monitor recombination processes in p-type silicon solar cells. Energy Procedia, 2014, 55: 169–178
|
11 |
Niewelt T, Schön J, Broisch J, Warta W, Schubert M. Electrical characterization of the slow boron oxygen defect component in Czochralski silicon. physica status solidi–Rapid Research Letters, 2015, 9(12): 692–696
|
12 |
Niewelt T, Schön J, Broisch J, Rein S, Haunschild J, Warta W, Schubert M C. Experimental proof of the slow light-induced degradation component incompensated n-type silicon. Solid State Phenomena, 2015, 242: 102–108
|
13 |
Walter D C, Lim B, Schmidt J. Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron-oxygen-related defect center. Progress in Photovoltaics: Research and Applications, 2016, 24(7): 920–928
|
14 |
Hallam B, Abbott M, Nærland T, Wenham S. Fast and slow lifetime degradation in boron-doped Czochralski silicon described by a single defect. physica status solidi—Rapid Research Letters, 2016, 107(7): 509–572
|
15 |
Glunz S W, Rein S, Lee J Y, Warta W. Minority carrier lifetime degradation in boron-doped Czochralski silicon. Journal of Applied Physics, 2001, 90(5): 2397–2404
|
16 |
Périchaud I. Gettering of impurities in solar silicon. Solar Energy Materials and Solar Cells, 2002, 72(1–4): 315–326
|
17 |
Sinton R A, Cuevas A, Stuckings M. Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In: Conference Record of the 25th IEEE Photovoltaic Specialists Conference. Washington D.C., USA, 1996, 457–460
|
18 |
Nagel H, Berge C, Aberle A G. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics, 1999, 86(11): 6218
|
19 |
Richter A, Werner F, Cuevas A, Schmidt J, Glunz S W. Improved parameterization of auger recombination in silicon. Energy Procedia, 2012, 27: 88–94
|
20 |
Cuevas A. The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells, 1999, 57(3): 277–290
|
21 |
Schenk A. Finite-temperature full random-phase approximation model of bandgap narrowing for silicon device simulation. Journal of Applied Physics, 1998, 84(7): 3684–3695
|
22 |
Couderc R, Amara M, Lemiti M. Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon. Journal of Applied Physics, 2014, 115(9): 093705
|
23 |
McIntosh K R, Altermatt P P. A freeware 1D emitter model for silicon solar cells. In: 35th IEEE Photovoltaic Specialists Conference. Honolulu, USA, 2010, 002188–002193
|
24 |
Green M A. Intrinsic concentration, effective densities of states, and effective mass in silicon. Journal of Applied Physics, 1990, 67(6): 2944–2954
|
25 |
Macdonald D H. Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping. Journal of Applied Physics, 2004, 95(3): 1021–1028
|
26 |
Thomson A F, McIntosh K R, Macdonald D. Effective lifetime characterisation of a room temperature meta-stable defect in n-type 5 Ω·cm FZ phosphorus-diffused oxide-passivated silicon. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference. Valencia, Spain, 2008, 517–521
|
27 |
Andrae R, Schulze-Hartung T, Melchior P. Dos and don’ts of reduced chi-squared. 2016–07, http://122.physics.ucdavis.edu/sites/default/files/files/Error%20Analysis/chi-sq-1012.3754.pdf
|
28 |
McIntosh K R, Sinton R A. Uncertainty in photoconductance lifetime measurements that use an inductive-coil detector. In: Proceedings of 23rd European Photovoltaic Solar Energy Conference. Valencia, Spain, 2008, 77–82
|
29 |
Blum A L, Swirhun J S, Sinton R A, Yan F, Herasimenka S, Roth T, Lauer K, Haunschild J, Lim B, Bothe K, Hameiri Z, Seipel B, Xiong R, Dhamrin M, Murphy J D. Interlaboratory study of eddy-current measurement of excess-carrier recombination lifetime. IEEE Journal of Photovoltaics, 2014, 4(1): 525–531
|
30 |
Haynes J R, Hornbeck J A. Temporary traps in silicon and germanium. Physical Review, 1953, 90(1): 152–153
|
31 |
Cousins P J, Neuhaus D H, Cotter J E. Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. Journal of Applied Physics, 2004, 95(4): 1854–1858
|
32 |
Seiffe J, Gautero L, Hofmann M, Rentsch J, Preu R, Weber S, Eichel R A. Surface passivation of crystalline silicon by plasma-enhanced chemical vapor deposition double layers of silicon-rich silicon oxynitride and silicon nitride. Journal of Applied Physics, 2011, 109(3): 034105
|
33 |
Liao B, Stangl R, Mueller T, Lin F, Bhatia C S, Hoex B. The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al2O3. Journal of Applied Physics, 2013, 113(2): 024509
|
34 |
Sperber D, Herguth A, Hahn G. On the stability of dielectric passivation subjected to illumination and temperature treatments on the stability of dielectric passivation. In: Proceedings of the 26th European Photovoltaic Solar Energy Conference. Munich, Germany, 2016
|
35 |
Seiffe J, Hofmann M, Rentsch J, Preu R. Charge carrier trapping at passivated silicon surfaces. Journal of Applied Physics, 2011, 109(6): 064505
|
36 |
Murphy J D, Bothe K, Krain R, Voronkov V V, Falster R J. Parameterisation of injection-dependent lifetime measurements in semiconductorsin terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon. Journal of Applied Physics, 2012, 111(11): 113709
|
37 |
Niewelt T, Schön J, Broisch J, Mägdefessel S, Warta W, Schubert M. A unified parameterization of the formation of boron oxygen defects and their electrical activity. Energy Procedia, 2016, 92: 170–179
|
38 |
Niewelt T, Mägdefessel S, Schubert M. Fast in-situ photoluminescence analysis for a recombination parameterization of the fast BO defect component in silicon. Journal of Applied Physics, 2016, 120(8): 085705
|
39 |
Bothe K, Hezel R, Schmidt J. Understanding and reducing the boron-oxygen-related performance degradation in Czochralski silicon solar cells. Solid State Phenomena, 2004, 95: 223–228
|
40 |
Hamer P, Nampalli N, Hameiri Z, Kim M, Chen D, Gorman N, Hallamb B, Abbottb M, Wenhamb S. Boron-oxygen defect formation rates and activity at elevated temperatures. Energy Procedia, 2016, 92: 791–800
|
41 |
Nakayashiki K, Hofstetter J, Morishige A E, Li T A, Needleman D B, Jensen M A, Buonassisi T. Engineering solutions and root-cause analysis for light-induced degradation in p-type multicrystalline silicon PERC modules. IEEE Journal of Photovoltaics, 2016, 6(4): 860–868
|
/
〈 | 〉 |