RESEARCH ARTICLE

POCl3 diffusion for industrial Si solar cell emitter formation

  • Hongzhao LI ,
  • Kyung KIM ,
  • Brett HALLAM ,
  • Bram HOEX ,
  • Stuart WENHAM ,
  • Malcolm ABBOTT
Expand
  • School of Photovoltaic and Renewable Energy Engineering, UNSW Australia, Sydney, NSW 2052, Australia

Received date: 22 Jul 2016

Accepted date: 23 Sep 2016

Published date: 16 Nov 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in temperature and duration, drive-in O2 flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl3 tube diffused emitters.

Cite this article

Hongzhao LI , Kyung KIM , Brett HALLAM , Bram HOEX , Stuart WENHAM , Malcolm ABBOTT . POCl3 diffusion for industrial Si solar cell emitter formation[J]. Frontiers in Energy, 2017 , 11(1) : 42 -51 . DOI: 10.1007/s11708-016-0433-7

Acknowledgments

The authors would like to acknowledge Dr. Nino Borojevic, Dr. Ly Mai and MAiA processing team who assisted with wafer processing. This Program has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA) and the Australian Centre for Advanced Photovoltaics (ACAP). The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein. The authors would like to thank the commercial partners of the ARENA 1-A060 project for their funding support for this work.
1
International Technology Roadmap for Photovoltaic. (ITRPV.net) Results 2015 Version 2. 2015

2
Lossen J, Lauer K, Mittelstädt L, Dauwe S, Beneking C. Making use of silicon wafers with low lifetimes by adequate POCl3 diffusion. In: The 20th European Photovolatic Solar Energy Conference. Barcelona, Spain, 2005

3
Manshanden P, Geerligs L J. Improved phosphorous gettering of multicrystalline silicon. Solar Energy Materials and Solar Cells, 2006, 90(7–8): 998–1012

4
Härkönen J, Lempinen V P, Juvonen T, Kylmäluoma J. Recovery of minority carrier lifetime in low-cost multicrystalline silicon. Solar Energy Materials and Solar Cells, 2002, 73(2): 125–130

5
Joonwichien S, Takahashi I, Matsushima S, Usami N. Enhanced phosphorus gettering of impurities in multicrystalline silicon at low temperature. Energy Procedia, 2014, 55: 203–210

DOI

6
Vacek V, Žáček S, Horsák I. Phosphorus and boron diffusion gettering of iron in monocrystalline silicon. Journal of Applied Physics, 2011,109(109): 093505

7
Bentzen A, Holt A, Kopecek R, Stokkan G, Christensen J S. Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing. Journal of Applied Physics, 2006, 99(9): 093509

8
Cerofolini G F. Polignano M L, Nava F, Ottaviani G. On the mechanism responsible for phosphorus inactivation in heavily doped silicon. Thin Solid Films, 1982, 97(4): 363–367

9
Solmi S. Parisini A, Angelucci R, Armigliato A, Nobili D. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B, 1996, 53(12): 7836–7841

10
Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H, Altermatt P P. Relationships between diffusion parameters and phosphorus precipitation during the POCl3 diffusion process. Energy Procedia, 2013, 38(0): 254–262

11
Ostoja P, Guerri S, Negrini P, Solmi S. The effects of phosphorus precipitation on the open-circuit voltage in N+/P silicon solar cells. Solar Cells, 1984, 11(1): 1–12

12
Tsai J C C. Shallow phosphorus diffusion profiles in silicon. Proceedings of the IEEE, 1969, 57(9): 1499–1506

13
Cousins P J, Cotter J E. The influence of diffusion-induced dislocations on high efficiency silicon solar cells. IEEE Transactions on Electron Devices, 2006, 53(3): 457–464

14
Kimmerle A, Wolf A, Belledin U, Biro D. Modelling carrier recombination in highly phosphorus-doped industrial emitters. Energy Procedia, 2011, 8: 275–281

15
Wolf A, Kimmerle A, Werner S, Maier S, Belledin U, Meier S, Biro D. Status and perspective of emitter formation by POCl3-diffusion. 2015

16
Bazer-Bachi B, Fourmond E, Papet P, Bounaas L, Nichiporu k O. Higher emitter quality by reducing inactive phosphorus. Solar Energy Materials and Solar Cells, 2012, 105(10): 137–141

17
Altermatt P P, Schumacher J O, Cuevas A, Kerr M J, Glunz S W. Numerical modeling of highly doped Si: P emitters based on Fermi–dirac statistics and self-consistent material parameters. Journal of Applied Physics, 2002, 92(6): 3187–3197

18
Tannenbaum E. Detailed analysis of thin phosphorus-diffused layers in p-type silicon. Solid-State Electronics, 1961, 2(2–3): 123–132

19
Morris B L, Katz L E. Reduction of excess phosphorus and elimination of defects in phosphorus emitter diffusions. Journal of the Electrochemical Society, 1978, 125(5): 762–765

20
Nobili D. Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon. Journal of Applied Physics, 1982, 53(3): 1484–1491

21
Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valenia, Spain, 2010, 6: 10

22
Burrows M Z. Meisel A, Scardera G, Lemm i F. Front metal and diffusion optimization for selective emitter. In: 38th IEEE Photovoltaic Specialists Conference (PVSC). 2012: 002138–002141

23
Zhao J, Wang A, Green M A. Emitter design for high-efficiency silicon solar cells. Part I: Terrestrial cells. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193–202

24
Cuevas A, Balbuena M. Thick-emitter silicon solar cells. In: Photovoltaic Specialists Conference. 1988, 1: 429–434

25
Kerr M J. Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells. Dissertation for the Doctoral Degree. Canberra: Australian National University, 2002

26
Altermatt P P, Schenk A, Heiser G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si: P. Journal of Applied Physics, 2006, 100(11): 113714

27
Cuevas A, Kerr M J, Schmidt J. Passivation of crystalline silicon using silicon nitride. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003, 1: 913–918

28
Cuevas A, Basore P A, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics, 1996, 80(6): 3370–3375

29
Kerr M J, Schmidt J, Cuevas A, Bultman J H. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics, 2001, 89(7): 3821–3826

30
Bock R, Altermatt P P, Schmidt J. Accurate extraction of doping profiles from electrochemical capacitance voltage measurements. In: European Photovoltaic Solar Energy Conference. Valencia, Spain. 2008:1(5)

31
Sinton R A, Cuevas A. A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference. 2000, 1152

32
Kane D E, Swanson R M. Measurement of the emitter saturation current by a contactless photoconductivity decay method. In: IEEE Photovoltaic Specialists Conference. 1985, 18: 578–583

33
Duttagupta S, Ma F, Hoex B, Mueller T, Aberle A G. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. Energy Procedia, 2012, 15(17): 78–83

34
PVLIGHTHOUSE.

35
Abbott M, Scardera G, Mcintosh K R, Meisel A. Simulation of emitter doping profiles formed by industrial POCl3 processes. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 1383–1388

36
Abbott M D. An examination of three common assumptions used to simulate recombination in heavily doped silicon. In: Proceedings of the 28th EU PVSEC. Paris, France. 2013: 1672–1679

37
McIntosh K R, Johnson L P. Recombination at textured silicon surfaces passivated with silicon dioxide. Journal of Applied Physics, 2009, 105(12): 124520

38
Wagner H, Dastgheib-Shirazi A, Chen R, Dunham S T, Kessler M. Improving the predictive power of modeling the emitter diffusion by fully including the phosphsilicate glass (PSG) layer. In: Photovoltaic Specialists Conference (PVSC). 2011: 002957–002962

39
Chen R, Wagner H, Dastgheib-Shirazi A, Kessle r M. Understanding coupled oxide growth and phosphorus diffusion in POCl3 deposition for control of phosphorus emitter diffusion. In: Photovoltaic Specialists Conference (PVSC). 2012: 000213–000216

40
Micard G, Dastgheib-Shirazi A, Altermatt P P, Solar T. Advances in the understanding of phosphorus silicate glass (PSG) formation for accurate process simulation of phosphorus diffusion. In: The 27th European Photovoltaic Solar Energy Conference. Frankfurt, Germany. 2012

41
Hu S M, Fahey P, Dutton R W. On models of phosphorus diffusion in silicon. Journal of Applied Physics, 1983, 54(12): 6912–6922

42
Rothhardt P, Keding R, Belledin U, Wolf A, Biro D. Control of phosphorus doping profiles for co-diffusion processes. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. 2012

43
Safiei A, Windgassen H, Wolter K, Kurz H. Emitter profile tailoring to contact homogeneous high sheet resistance emitter. Energy Procedia, 2012, 27: 432–437

44
Rothhardt P, Demberger C, Wolf A, Biro D. Co-diffusion from APCVD BSG and POCl3 for industrial n-type solar cells. Energy Procedia, 2013, 38: 305–311

45
Lee H J, Kang M G, Choi S J, Kang G H, Myoung J M. Characteristics of silicon solar cell emitter with a reduced diffused phosphorus inactive layer. Current Applied Physics, 2013, 13(8): 1718–1722

46
Duffy M C, Barson F, Fairfield J M, Schwuttke G H. Effects of high phosphorus concentration on diffusion into silicon. Journal of the Electrochemical Society, 1968, 115(1): 84–88

47
Steyer M, Dastgheib-Shirazi A, Hahn G, Terheiden B. New method for determination of electrically inactive phosphorus in n-type emitters. Energy Procedia, 2015, 77: 316–320

48
Kooi E. Formation and composition of surface layers and solubility limits of phosphorus during diffusion in silicon. Journal of the Electrochemical Society, 1964, 111(12): 1383–1387

49
Kumar D, Saravanan S, Suratkar P. Effect of oxygen ambient during phosphorous diffusion on silicon solar cell. Journal of Renewable and Sustainable Energy, 2012, 4(3): 033105

50
de Rose R, Zanuccoli M, Magnone P, Frei M, Sangiorgi E. Understanding the impact of the doping profiles on selective emitter solar cell by two-dimensional numerical simulation. IEEE Journal of Photovoltaics, 2013, 3(1): 159–167

51
Carroll A F. Screen printed metal contacts to Si solar cells-formation and synergistic improvements. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 3435–3440

52
Biro D, Mack S, Wolf A, Lemke A, Belledin U. Thermal oxidation as a key technology for high efficiency screen printed industrial silicon solar cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. PA, USA, 2009: 1594–1599

53
Schultz O, Mette A, Hermle M, Glunz S W. Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 317–324

54
Schultz O, Hofmann M, Glunz S W, Willeke G P. Silicon oxide/silicon nitride stack system for 20% efficient silicon solar cells. In: The 31st IEEE Photovoltaic Specialists Conference. 2005: 872–876

55
Ortega P, Vetter M, Bermejo S, Alcubilla R. Very low recombination phosphorus emitters for high efficiency crystalline silicon solar cells. Semiconductor Science and Technology, 2008, 23(12): 125032

56
Janssens T, Posthuma N E, van Kerschaver E, Baer t K. Advanced phosphorous emitters for high efficiency Si solar cells. In: The 34th IEEE Photovoltaic Specialists Conference (PVSC). 2009: 000878–000882

57
Blakers A W, Wang A H, Milne A M, Zhao J H, Green Martin A. 22.8% efficient silicon solar cell. Applied Physics Letters, 1989, 55(13): 1363–1365

58
Masetti G, Solmi S, Soncini G. On phosphorus diffusion in silicon under oxidizing atmospheres. Solid-State Electronics, 1973, 16(12): 1419–1421

59
Florakis A, Janssens T, Posthuma N, Delmotte J, Douhard B. Simulation of the phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or ion implantation and annealing. Energy Procedia, 2013, 38: 263–269

60
Hallam B, Wenham S, Chong C M, Sugianto A, Mai L. Record large-area p-type CZ production cell efficiency of 19.3% based on LDSE technology. IEEE Journal of Photovoltaics, 2011, 1(1): 43–48

61
Lee E, Lee H, Choi J, Oh D, Shim J. Improved LDSE processing for the avoidance of overplating yielding 19.2% efficiency on commercial grade crystalline Si solar cell. Solar Energy Materials and Solar Cells, 2011, 95(12): 3592–3595

62
Cooper I B, Tate K, Carroll A F, Mikeska K R, Reedy R C. Low resistance screen-printed Ag contacts to POCl3 emitters with low saturation current density for high efficiency Si solar cells. In: Photovoltaic Specialists Conference (PVSC). 2012: 003359–003364

63
Kerr M J, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics, 2002, 91(4): 2473–2480

64
Richter A, Glunz S W, Werner F, Schmidt J, Cuevas A. Improved quantitative description of auger recombination in crystalline silicon. Physical Review B, 2012, 86(16): 165–202

65
Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics, 1998, 84(7): 3684–3695

66
Banghart E K, Gray J L. Extension of the open-circuit voltage decay technique to include plasma-induced bandgap narrowing. IEEE Transactions on Electron Devices, 1992, 39(5): 1108–1114

67
Altermatt P P, Schenk A, Geelhaar F, Heiser G. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics, 2003, 93(3): 1598–1604

68
Mäckel H, Varner K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 850–866

69
Fahey P M, Griffin P, Plummer J. Point defects and dopant diffusion in silicon. Reviews of Modern Physics, 1989, 61(2): 289–384

70
Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H. Effects of process conditions for the n+-emitter formation in crystalline silicon. In: Photovoltaic Specialists Conference (PVSC). 2012: 001584–001589

71
Tsai J C C. Point defect generation during phosphorus diffusion in silicon I. Journal of the Electrochemical Society, 1987, 134(6): 1508–1518

72
Min B, Wagner H, Dastgheib-Shirazi A, Kimmerle A, Ku rz H. Heavily doped Si:P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation. physica status solidi (RRL) – Rapid Research Letters, 2014, 8(8): 680–684

73
Min B, Wagner H, Altermatt P P, Dastgheib-Shiraz i A. Limitation of industrial phosphorus-diffused emitters by SRH recombination. Energy Procedia, 2014, 55: 115–120

74
Schmidt P F, Stickler R. Silicon phosphide precipitates in diffused silicon. Journal of the Electrochemical Society, 1964, 111(10): 1188–1189

75
Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. In: The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valencia, Spain, 2010, 6: 10

Outlines

/