POCl3 diffusion for industrial Si solar cell emitter formation

Hongzhao LI, Kyung KIM, Brett HALLAM, Bram HOEX, Stuart WENHAM, Malcolm ABBOTT

PDF(390 KB)
PDF(390 KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (1) : 42-51. DOI: 10.1007/s11708-016-0433-7
RESEARCH ARTICLE
RESEARCH ARTICLE

POCl3 diffusion for industrial Si solar cell emitter formation

Author information +
History +

Abstract

POCl3 diffusion is currently the de facto standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in temperature and duration, drive-in O2 flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl3 tube diffused emitters.

Graphical abstract

Keywords

POCl3 diffusion / emitter recombination / oxidation / silicon

Cite this article

Download citation ▾
Hongzhao LI, Kyung KIM, Brett HALLAM, Bram HOEX, Stuart WENHAM, Malcolm ABBOTT. POCl3 diffusion for industrial Si solar cell emitter formation. Front. Energy, 2017, 11(1): 42‒51 https://doi.org/10.1007/s11708-016-0433-7

References

[1]
International Technology Roadmap for Photovoltaic. (ITRPV.net) Results 2015 Version 2. 2015
[2]
Lossen J, Lauer K, Mittelstädt L, Dauwe S, Beneking C. Making use of silicon wafers with low lifetimes by adequate POCl3 diffusion. In: The 20th European Photovolatic Solar Energy Conference. Barcelona, Spain, 2005
[3]
Manshanden P, Geerligs L J. Improved phosphorous gettering of multicrystalline silicon. Solar Energy Materials and Solar Cells, 2006, 90(7–8): 998–1012
[4]
Härkönen J, Lempinen V P, Juvonen T, Kylmäluoma J. Recovery of minority carrier lifetime in low-cost multicrystalline silicon. Solar Energy Materials and Solar Cells, 2002, 73(2): 125–130
[5]
Joonwichien S, Takahashi I, Matsushima S, Usami N. Enhanced phosphorus gettering of impurities in multicrystalline silicon at low temperature. Energy Procedia, 2014, 55: 203–210
CrossRef Google scholar
[6]
Vacek V, Žáček S, Horsák I. Phosphorus and boron diffusion gettering of iron in monocrystalline silicon. Journal of Applied Physics, 2011,109(109): 093505
[7]
Bentzen A, Holt A, Kopecek R, Stokkan G, Christensen J S. Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing. Journal of Applied Physics, 2006, 99(9): 093509
[8]
Cerofolini G F. Polignano M L, Nava F, Ottaviani G. On the mechanism responsible for phosphorus inactivation in heavily doped silicon. Thin Solid Films, 1982, 97(4): 363–367
[9]
Solmi S. Parisini A, Angelucci R, Armigliato A, Nobili D. Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Physical Review B, 1996, 53(12): 7836–7841
[10]
Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H, Altermatt P P. Relationships between diffusion parameters and phosphorus precipitation during the POCl3 diffusion process. Energy Procedia, 2013, 38(0): 254–262
[11]
Ostoja P, Guerri S, Negrini P, Solmi S. The effects of phosphorus precipitation on the open-circuit voltage in N+/P silicon solar cells. Solar Cells, 1984, 11(1): 1–12
[12]
Tsai J C C. Shallow phosphorus diffusion profiles in silicon. Proceedings of the IEEE, 1969, 57(9): 1499–1506
[13]
Cousins P J, Cotter J E. The influence of diffusion-induced dislocations on high efficiency silicon solar cells. IEEE Transactions on Electron Devices, 2006, 53(3): 457–464
[14]
Kimmerle A, Wolf A, Belledin U, Biro D. Modelling carrier recombination in highly phosphorus-doped industrial emitters. Energy Procedia, 2011, 8: 275–281
[15]
Wolf A, Kimmerle A, Werner S, Maier S, Belledin U, Meier S, Biro D. Status and perspective of emitter formation by POCl3-diffusion. 2015
[16]
Bazer-Bachi B, Fourmond E, Papet P, Bounaas L, Nichiporu k O. Higher emitter quality by reducing inactive phosphorus. Solar Energy Materials and Solar Cells, 2012, 105(10): 137–141
[17]
Altermatt P P, Schumacher J O, Cuevas A, Kerr M J, Glunz S W. Numerical modeling of highly doped Si: P emitters based on Fermi–dirac statistics and self-consistent material parameters. Journal of Applied Physics, 2002, 92(6): 3187–3197
[18]
Tannenbaum E. Detailed analysis of thin phosphorus-diffused layers in p-type silicon. Solid-State Electronics, 1961, 2(2–3): 123–132
[19]
Morris B L, Katz L E. Reduction of excess phosphorus and elimination of defects in phosphorus emitter diffusions. Journal of the Electrochemical Society, 1978, 125(5): 762–765
[20]
Nobili D. Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon. Journal of Applied Physics, 1982, 53(3): 1484–1491
[21]
Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valenia, Spain, 2010, 6: 10
[22]
Burrows M Z. Meisel A, Scardera G, Lemm i F. Front metal and diffusion optimization for selective emitter. In: 38th IEEE Photovoltaic Specialists Conference (PVSC). 2012: 002138–002141
[23]
Zhao J, Wang A, Green M A. Emitter design for high-efficiency silicon solar cells. Part I: Terrestrial cells. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193–202
[24]
Cuevas A, Balbuena M. Thick-emitter silicon solar cells. In: Photovoltaic Specialists Conference. 1988, 1: 429–434
[25]
Kerr M J. Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells. Dissertation for the Doctoral Degree. Canberra: Australian National University, 2002
[26]
Altermatt P P, Schenk A, Heiser G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si: P. Journal of Applied Physics, 2006, 100(11): 113714
[27]
Cuevas A, Kerr M J, Schmidt J. Passivation of crystalline silicon using silicon nitride. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003, 1: 913–918
[28]
Cuevas A, Basore P A, Giroult-Matlakowski G, Dubois C. Surface recombination velocity of highly doped n-type silicon. Journal of Applied Physics, 1996, 80(6): 3370–3375
[29]
Kerr M J, Schmidt J, Cuevas A, Bultman J H. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide. Journal of Applied Physics, 2001, 89(7): 3821–3826
[30]
Bock R, Altermatt P P, Schmidt J. Accurate extraction of doping profiles from electrochemical capacitance voltage measurements. In: European Photovoltaic Solar Energy Conference. Valencia, Spain. 2008:1(5)
[31]
Sinton R A, Cuevas A. A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference. 2000, 1152
[32]
Kane D E, Swanson R M. Measurement of the emitter saturation current by a contactless photoconductivity decay method. In: IEEE Photovoltaic Specialists Conference. 1985, 18: 578–583
[33]
Duttagupta S, Ma F, Hoex B, Mueller T, Aberle A G. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling. Energy Procedia, 2012, 15(17): 78–83
[34]
PVLIGHTHOUSE.
[35]
Abbott M, Scardera G, Mcintosh K R, Meisel A. Simulation of emitter doping profiles formed by industrial POCl3 processes. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 1383–1388
[36]
Abbott M D. An examination of three common assumptions used to simulate recombination in heavily doped silicon. In: Proceedings of the 28th EU PVSEC. Paris, France. 2013: 1672–1679
[37]
McIntosh K R, Johnson L P. Recombination at textured silicon surfaces passivated with silicon dioxide. Journal of Applied Physics, 2009, 105(12): 124520
[38]
Wagner H, Dastgheib-Shirazi A, Chen R, Dunham S T, Kessler M. Improving the predictive power of modeling the emitter diffusion by fully including the phosphsilicate glass (PSG) layer. In: Photovoltaic Specialists Conference (PVSC). 2011: 002957–002962
[39]
Chen R, Wagner H, Dastgheib-Shirazi A, Kessle r M. Understanding coupled oxide growth and phosphorus diffusion in POCl3 deposition for control of phosphorus emitter diffusion. In: Photovoltaic Specialists Conference (PVSC). 2012: 000213–000216
[40]
Micard G, Dastgheib-Shirazi A, Altermatt P P, Solar T. Advances in the understanding of phosphorus silicate glass (PSG) formation for accurate process simulation of phosphorus diffusion. In: The 27th European Photovoltaic Solar Energy Conference. Frankfurt, Germany. 2012
[41]
Hu S M, Fahey P, Dutton R W. On models of phosphorus diffusion in silicon. Journal of Applied Physics, 1983, 54(12): 6912–6922
[42]
Rothhardt P, Keding R, Belledin U, Wolf A, Biro D. Control of phosphorus doping profiles for co-diffusion processes. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. 2012
[43]
Safiei A, Windgassen H, Wolter K, Kurz H. Emitter profile tailoring to contact homogeneous high sheet resistance emitter. Energy Procedia, 2012, 27: 432–437
[44]
Rothhardt P, Demberger C, Wolf A, Biro D. Co-diffusion from APCVD BSG and POCl3 for industrial n-type solar cells. Energy Procedia, 2013, 38: 305–311
[45]
Lee H J, Kang M G, Choi S J, Kang G H, Myoung J M. Characteristics of silicon solar cell emitter with a reduced diffused phosphorus inactive layer. Current Applied Physics, 2013, 13(8): 1718–1722
[46]
Duffy M C, Barson F, Fairfield J M, Schwuttke G H. Effects of high phosphorus concentration on diffusion into silicon. Journal of the Electrochemical Society, 1968, 115(1): 84–88
[47]
Steyer M, Dastgheib-Shirazi A, Hahn G, Terheiden B. New method for determination of electrically inactive phosphorus in n-type emitters. Energy Procedia, 2015, 77: 316–320
[48]
Kooi E. Formation and composition of surface layers and solubility limits of phosphorus during diffusion in silicon. Journal of the Electrochemical Society, 1964, 111(12): 1383–1387
[49]
Kumar D, Saravanan S, Suratkar P. Effect of oxygen ambient during phosphorous diffusion on silicon solar cell. Journal of Renewable and Sustainable Energy, 2012, 4(3): 033105
[50]
de Rose R, Zanuccoli M, Magnone P, Frei M, Sangiorgi E. Understanding the impact of the doping profiles on selective emitter solar cell by two-dimensional numerical simulation. IEEE Journal of Photovoltaics, 2013, 3(1): 159–167
[51]
Carroll A F. Screen printed metal contacts to Si solar cells-formation and synergistic improvements. In: The 39th Photovoltaic Specialists Conference (PVSC). 2013: 3435–3440
[52]
Biro D, Mack S, Wolf A, Lemke A, Belledin U. Thermal oxidation as a key technology for high efficiency screen printed industrial silicon solar cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. PA, USA, 2009: 1594–1599
[53]
Schultz O, Mette A, Hermle M, Glunz S W. Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 317–324
[54]
Schultz O, Hofmann M, Glunz S W, Willeke G P. Silicon oxide/silicon nitride stack system for 20% efficient silicon solar cells. In: The 31st IEEE Photovoltaic Specialists Conference. 2005: 872–876
[55]
Ortega P, Vetter M, Bermejo S, Alcubilla R. Very low recombination phosphorus emitters for high efficiency crystalline silicon solar cells. Semiconductor Science and Technology, 2008, 23(12): 125032
[56]
Janssens T, Posthuma N E, van Kerschaver E, Baer t K. Advanced phosphorous emitters for high efficiency Si solar cells. In: The 34th IEEE Photovoltaic Specialists Conference (PVSC). 2009: 000878–000882
[57]
Blakers A W, Wang A H, Milne A M, Zhao J H, Green Martin A. 22.8% efficient silicon solar cell. Applied Physics Letters, 1989, 55(13): 1363–1365
[58]
Masetti G, Solmi S, Soncini G. On phosphorus diffusion in silicon under oxidizing atmospheres. Solid-State Electronics, 1973, 16(12): 1419–1421
[59]
Florakis A, Janssens T, Posthuma N, Delmotte J, Douhard B. Simulation of the phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or ion implantation and annealing. Energy Procedia, 2013, 38: 263–269
[60]
Hallam B, Wenham S, Chong C M, Sugianto A, Mai L. Record large-area p-type CZ production cell efficiency of 19.3% based on LDSE technology. IEEE Journal of Photovoltaics, 2011, 1(1): 43–48
[61]
Lee E, Lee H, Choi J, Oh D, Shim J. Improved LDSE processing for the avoidance of overplating yielding 19.2% efficiency on commercial grade crystalline Si solar cell. Solar Energy Materials and Solar Cells, 2011, 95(12): 3592–3595
[62]
Cooper I B, Tate K, Carroll A F, Mikeska K R, Reedy R C. Low resistance screen-printed Ag contacts to POCl3 emitters with low saturation current density for high efficiency Si solar cells. In: Photovoltaic Specialists Conference (PVSC). 2012: 003359–003364
[63]
Kerr M J, Cuevas A. General parameterization of Auger recombination in crystalline silicon. Journal of Applied Physics, 2002, 91(4): 2473–2480
[64]
Richter A, Glunz S W, Werner F, Schmidt J, Cuevas A. Improved quantitative description of auger recombination in crystalline silicon. Physical Review B, 2012, 86(16): 165–202
[65]
Schenk A. Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation. Journal of Applied Physics, 1998, 84(7): 3684–3695
[66]
Banghart E K, Gray J L. Extension of the open-circuit voltage decay technique to include plasma-induced bandgap narrowing. IEEE Transactions on Electron Devices, 1992, 39(5): 1108–1114
[67]
Altermatt P P, Schenk A, Geelhaar F, Heiser G. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. Journal of Applied Physics, 2003, 93(3): 1598–1604
[68]
Mäckel H, Varner K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 850–866
[69]
Fahey P M, Griffin P, Plummer J. Point defects and dopant diffusion in silicon. Reviews of Modern Physics, 1989, 61(2): 289–384
[70]
Dastgheib-Shirazi A, Steyer M, Micard G, Wagner H. Effects of process conditions for the n+-emitter formation in crystalline silicon. In: Photovoltaic Specialists Conference (PVSC). 2012: 001584–001589
[71]
Tsai J C C. Point defect generation during phosphorus diffusion in silicon I. Journal of the Electrochemical Society, 1987, 134(6): 1508–1518
[72]
Min B, Wagner H, Dastgheib-Shirazi A, Kimmerle A, Ku rz H. Heavily doped Si:P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation. physica status solidi (RRL) – Rapid Research Letters, 2014, 8(8): 680–684
[73]
Min B, Wagner H, Altermatt P P, Dastgheib-Shiraz i A. Limitation of industrial phosphorus-diffused emitters by SRH recombination. Energy Procedia, 2014, 55: 115–120
[74]
Schmidt P F, Stickler R. Silicon phosphide precipitates in diffused silicon. Journal of the Electrochemical Society, 1964, 111(10): 1188–1189
[75]
Komatsu Y, Vlooswijk A H G, Stassen A F, Venema P, Meyer C. Sophistication of doping profile manipulation-emitter performance improvement without additional process step. In: The 25th European Photovoltaic Solar Energy Conference and Exhibition-5th World Conference on Photovoltaic Energy Conversion. Valencia, Spain, 2010, 6: 10

Acknowledgments

The authors would like to acknowledge Dr. Nino Borojevic, Dr. Ly Mai and MAiA processing team who assisted with wafer processing. This Program has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA) and the Australian Centre for Advanced Photovoltaics (ACAP). The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein. The authors would like to thank the commercial partners of the ARENA 1-A060 project for their funding support for this work.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(390 KB)

Accesses

Citations

Detail

Sections
Recommended

/