Condition monitoring of a wind turbine generator using a standalone wind turbine emulator
Received date: 07 Jul 2015
Accepted date: 28 Oct 2015
Published date: 07 Sep 2016
Copyright
The intend of this paper is to give a description of the realization of a low-cost wind turbine emulator(WTE) with open source technology from graze required for the condition monitoring to diagnose rotor and stator faults in a wind turbine generator (WTG). The WTE comprises of a 2.5 kW DC motor coupled with a 1 kW squirrel-cage induction machine. This paper provides a detailed overview of the hardware and software used along with the WTE control strategies such as MPPT and pitch control. The emulator reproduces dynamic characteristics both under step variations and arbitrary variation in the wind speed of a typical wind turbine (WT) of a wind energy conversion system (WECS). The usefulness of the setup has been benchmarked with previously verified WT test rigs made at the University of Manchester and Durham University in UK. Considering the fact that the rotor blades and electric subassemblies direct drive WTs are most susceptible to damage in practice, generator winding faults and rotor unbalance have been introduced and investigated using the terminal voltage and generated current. This wind turbine emulator (WTE) can be reconfigured or analyzed for condition monitoring without the need for real WTs.
Himani , Ratna DAHIYA . Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Frontiers in Energy, 2016 , 10(3) : 286 -297 . DOI: 10.1007/s11708-016-0419-5
1 |
Kamel R M. Effect of wind generation system types on micro-grid (MG) fault performance during both standalone and grid connected modes. Energy Conversion and Management, 2014, 79: 232–245
|
2 |
Tavner P J, Faulstich S, Hahn B, van Bussel G J W. Reliability & availability of wind turbine electrical & electronic components. European Power Electronics Journal, 2011, 20(4): 45–50
|
3 |
Ribrant J, Bertling L. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Transactions on Energy Conversion, 2007, 22(1): 167–173
|
4 |
Djurovic S, Crabtree C J, Tavner P J, Smith A C. Condition monitoring of wind turbine induction generators with rotor electrical asymmetry. IET Renewable Power Generation, 2012, 6(4): 207–216
|
5 |
Gandhi A, Corrigan T, Parsa L. Recent advances in modeling and online detection of stator interturn faults in electrical motors. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1564–1575
|
6 |
Seshadrinath J, Singh B, Panigrahi B K. Single-turn fault detection in induction machine using complex-wavelet-based method. IEEE Transactions on Industry Applications, 2012, 48(6): 1846–1854
|
7 |
Yang W, Tavner P J, Crabtree C J, Feng Y, Qiu Y. Wind turbine condition monitoring: technical and commercial challenges. Wind Energy (Chichester, England), 2014, 17(5): 673–693
|
8 |
Djurovic S, Crabtree C J, Tavner P J, Smith A C. Condition monitoring of wind turbine induction generators with rotor electrical asymmetry. IET Renewable Power Generation, 2012, 6(4): 207–216
|
9 |
Gong X, Qiao W. Imbalance fault detection of direct-drive wind turbines using generator current signals. IEEE Transactions on Energy Conversion, 2012, 27(2): 468–476
|
10 |
Yang W. Condition monitoring the drive train of a direct drive permanent magnet wind turbine using generator electrical signals. Journal of Solar Energy Engineering, 2014, 136(2): 021008
|
11 |
Attoui I, Omeiri A. Modeling, control and fault diagnosis of an isolated wind energy conversion system with a self-excited induction generator subject to electrical faults. Energy Conversion and Management, 2014, 82: 11–26
|
12 |
Sahoo N C, Satpathy A S, Kishore N K, Venkatesh B.D. C. motor-based wind turbine emulator using LabVIEW for wind energy conversion system laboratory setup. International Journal of Electrical Engineering Education, 2013, 50(2): 111–126
|
13 |
Arribas J R, Veganzones C, Blazquez F, Platero C, Ramirez D, Martinez S, Sanchez J A, Herrero Martinez N. Computer-based simulation and scaled laboratory bench system for the teaching and training of engineers on the control of doubly fed induction wind generators. IEEE Transactions on Power Systems, 2011, 26(3): 1534–1543
|
14 |
Martinez F, Herrero C, de Pablo S. Open loop wind turbine emulator. Renewable Energy, 2014, 63: 212–221
|
15 |
Mesemanolis A, Mademlis C, Kioskeridis I. Optimal efficiency control strategy in wind energy conversion system with induction generator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(4): 238–246
|
16 |
Mesemanolis A, Mademlis C, Kioskeridis I. High-efficiency control for a wind energy conversion system with induction generator. IEEE Transactions on Energy Conversion, 2012, 27(4): 958–967
|
17 |
Zou Y, Elbuluk M E, Sorez Y. Simulation comparisons and implementation of induction generator wind power systems. IEEE Transactions on Industry Applications, 2013, 49(3): 1119–1128
|
18 |
Castell J, Espí J M, García-Gil R. Development details and performance assessment of a wind turbine emulator. Renewable Energy, 2016, 86: 848–857
|
19 |
Yang W, Tavner P J, Crabtree C J, Feng Y, Qiu Y. Wind turbine condition monitoring: technical and commercial challenges. Wind Energy (Chichester, England), 2014, 17(5): 673–693
|
20 |
Yang W, Tavner P J, Crabtree C J, Wilkinson M. Cost effective condition monitoring for wind turbines. IEEE Transactions on Industrial Electronics, 2010, 57(1): 263–271
|
21 |
Djurovic S, Crabtree C J, Tavner P J, Smith A C. Condition monitoring of wind turbine induction generators with rotor electrical asymmetry. IET Renewable Power Generation, 2012, 6(4): 207–216
|
22 |
Kral C, Habetler T, Harley R. Detection of mechanical imbalances of induction machines without spectral analysis of time-domain signals. IEEE Transactions on Industry Applications, 2004, 40(4): 1101–1106
|
/
〈 | 〉 |