RESEARCH ARTICLE

Theoretical prediction and validation of global horizontal solar irradiance for a tropical climate in India

  • Sivasankari SUNDARAM ,
  • Jakka SARAT CHANDRA BABU
Expand
  • Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, India

Received date: 10 Dec 2014

Accepted date: 16 Feb 2015

Published date: 11 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper aims to propose monthly models responsible for the theoretical evaluation of the global horizontal irradiance of a tropical region in India which is Sivagangai situated in Tamilnadu. The actual measured global horizontal irradiance hails from a 5 MW solar power plant station located at Sivagangai in Tamilnadu. The data were monitored from May 2011 to April 2013. The theoretical assessment was conducted differently by employing a programming platform called Microsoft Visual Basic 2010 Express. A graphical user interface was created using Visual Basic 2010 Express, which provided the evaluation of empirical parameters for model formulation such as daily sunshine duration (S), maximum possible sunshine hour duration (S0), extra terrestrial horizontal global irradiance (H0) and extra terrestrial direct normal irradiance (G0). The proposed regression models were validated by the significance of statistical indicators such as mean bias error, root mean square error and mean percentage error from the predicted and the actual values for the region considered. Comparison was made between the proposed monthly models and the existing normalized models for global horizontal irradiance evaluation.

Cite this article

Sivasankari SUNDARAM , Jakka SARAT CHANDRA BABU . Theoretical prediction and validation of global horizontal solar irradiance for a tropical climate in India[J]. Frontiers in Energy, 2015 , 9(3) : 311 -321 . DOI: 10.1007/s11708-015-0369-3

Acknowledgments

The data of global solar radiation were obtained from 5 MW solar plant farm Sivagangai. Hence the authors thank the organization for their contribution of data set.
1
Salmi M, Chegaar M, Mialhe P. A collection of models for the estimation of global solar radiation in Algeria. Energy Sources, Part B: Economics, Planning, and Policy, 2011, 6(2): 187–191

DOI

2
Besharat F, Dehghan A A, Faghih A R. Empirical models for estimating global solar radiation: a review and case study. Renewable & Sustainable Energy Reviews, 2013, 21: 798–821

DOI

3
Angstrom A S. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 1924, 50(210): 121–126

DOI

4
Prescott J A. Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 1940, 64: 114–118

5
Ögelman H, Ecevit A, Tasdemiroglu E. A new method for estimating solar radiation from bright sunshine data. Solar Energy, 1984, 33(6): 619–625

DOI

6
Samuel T D M A. Estimation of global radiation for Sri Lanka. Solar Energy, 1991, 47(5): 333–337

DOI

7
Paltridge G W, Proctor D. Monthly mean solar radiation statistics for Australia. Solar Energy, 1976, 18(3): 235–243

DOI

8
Daneshyar M. Solar radiation statistics for Iran. Solar Energy, 1978, 21(4): 345–349

DOI

9
Samimi J. Estimation of height-dependent solar radiation and application to the solar climate of Iran. Solar Energy, 1994, 52(5): 401–409

DOI

10
Badescu V. Correlations to estimate monthly mean daily solar global irradiation: application to Romania. Energy, 1999, 24(10): 883–893

DOI

11
Sabziparvar A A. A simple formula for estimating global solar radiation in central arid deserts of Iran. Renewable Energy, 2008, 33(5): 1002–1010

DOI

12
Bristow K L, Campbell G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 1984, 31(2): 159–166

DOI

13
Allen R. Self-calibrating method for estimating solar radiation from air temperature. Journal of Hydrologic Engineering, 1997, 2(2): 56–67

DOI

14
Thornton P E, Running S W. An improved algorithm for estimating incident daily solar radiation from measurements of air temperature, humidity and precipitation. Agricultural and Forest Meteorology, 1999, 93(4): 211–228

DOI

15
Almorox J, Hontoria C, Benito M. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy, 2011, 88(5): 1703–1709

DOI

16
Swartman R K, Ogunlade O. Solar radiation estimates from common parameters. Solar Energy, 1967, 11(3-4): 170–172

DOI

17
Glover J, McCulloch J S G. The empirical relation between solar radiation and hours of sunshine. Quarterly Journal of the Royal Meteorological Society, 1958, 84(360): 172–175

DOI

18
Gopinathan K K. A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy, 1988, 41(6): 499–502

DOI

19
Chen R, Ersi K, Yang J, Lu S, Zhao W. Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 2004, 45(11-12): 1759–1769

DOI

20
AI-Alawi S M, AI- Hinai H A. An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renewable Energy, 1998, 14(1-4): 199–204

DOI

21
Mohandes M, Rehman S, Halawani T O. Estimation of global solar radiation using artificial neural networks. Renewable Energy, 1998, 14(1-4): 179–184

DOI

22
Mubiru J, Banda E J K B. Estimation of monthly average daily global solar irradiation using artificial neural networks. Solar Energy, 2008, 82(2): 181–187

DOI

23
Perez R, Lorenz E, Pelland S, Beauharnois M, Van Knowe G, Hemker K Jr, Heinemann D, Remund J, Müller S C, Traunmüller W, Steinmauer G, Pozo D, Ruiz-Arias J A, Lara-Fanego V, Ramirez-Santigosa L, Gaston-Romero M, Pomares L M. Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Solar Energy, 2013, 94: 305–326

DOI

24
Benghanem M, Mellit A, Alamri S N. ANN-based modelling and estimation of daily global solar radiation data: a case study. Energy Conservation and Management, 2009, 50(7): 1644–1655

DOI

25
Newland F J. A study of solar radiation models for the coastal region of South China. Solar Energy, 1988, 31: 227–235

26
Srivastava R C, Pandey H. Estimating Angstrom-Prescott coefficients for India and developing a correlation between sunshine hours and global solar radiation for India, ISRN Renewable Energy, 2013, Article ID 403742

27
Taylor W.&nbsp;Sunshine.&nbsp;1996-<month>07</month>,&nbsp;www.taylormade.com.au/billspages/sunshine/sunshine.html

28
Katiyar A K,&nbsp;Pandey C K.&nbsp;Simple correlation for estimating the global solar radiation on horizontal surfaces in India.&nbsp;Energy,&nbsp;2010,&nbsp;35(12):&nbsp;5043&ndash;5048

DOI

29
Driesse A,&nbsp;Thevenard D A.&nbsp;Test of Suehrcke’s sunshine radiation relationship using a global data set.&nbsp;Solar Energy,&nbsp;2002,&nbsp;72(2):&nbsp;167&ndash;175

DOI

30
Elagib N A,&nbsp;Mansell M G.&nbsp;New approaches for estimating global solar radiation across Sudan.&nbsp;Energy Conversion and Management,&nbsp;2000,&nbsp;41(5):&nbsp;419&ndash;434

DOI

31
Tiba C,&nbsp;de Aguiar R,&nbsp;Fraidenraich N.&nbsp;Analysis of a new relationship between monthly global irradiation and sunshine hours from a database of Brazil.&nbsp;Renewable Energy,&nbsp;2005,&nbsp;30(6):&nbsp;957&ndash;966

DOI

32
Mustafa Omer A.&nbsp;Diffuse solar radiation over Shambat, Khartoum North.&nbsp;Renewable Energy,&nbsp;1994,&nbsp;4(2):&nbsp;227&ndash;233

DOI

33
Tarhan S,&nbsp;Sar&inodot;&nbsp;A.&nbsp;Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey.&nbsp;Energy Conversion and Management,&nbsp;2005,&nbsp;46(4):&nbsp;605&ndash;613

DOI

34
YaoW,&nbsp;LiZ,&nbsp;WangY,&nbsp;JiangF,&nbsp;HuL.&nbsp;Evaluation of global solar radiation models for Shanghai, China.&nbsp;Energy Conversion and Management,&nbsp;2014,&nbsp;84:&nbsp;597&ndash;612

DOI

35
Veeran P K,&nbsp;Kumar S.&nbsp;Analysis of monthly average daily global radiation and monthly average sunshine duration at two tropical locations.&nbsp;Renewable Energy,&nbsp;1993,&nbsp;3(8):&nbsp;935&ndash;939

DOI

36
Zawilska E,&nbsp;Brooks M J.&nbsp;An assessment of the solar resource for Durban, South Africa.&nbsp;Renewable Energy,&nbsp;2011,&nbsp;36(12):&nbsp;3433&ndash;3438

DOI

37
Sudhakar K,&nbsp;Tulika S.&nbsp;Energy and exergy analysis of 36W solar photovoltaic module.&nbsp;International Journal of Ambient Energy.&nbsp;2013,&nbsp;35:&nbsp;51&ndash;57

38
Yousif C,&nbsp;Quecedo G O,&nbsp;Santos J B.&nbsp;Comparison of solar radiation in Marsaxlokk, Malta and Valladolid, Spain.&nbsp;Renewable Energy,&nbsp;2013,&nbsp;49:&nbsp;203&ndash;206

DOI

39
Almorox J,&nbsp;Benito M,&nbsp;Hontoria C.&nbsp;Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain.&nbsp;Renewable Energy,&nbsp;2005,&nbsp;30(6):&nbsp;931&ndash;936

DOI

40
Toğrul I T,&nbsp;Toğrul H,&nbsp;Evin D.&nbsp;Estimation of monthly global solar radiation from sunshine duration measurement in Elaziğ.&nbsp;Renewable Energy,&nbsp;2000,&nbsp;19(4):&nbsp;587&ndash;595

DOI

41
Hussain M,&nbsp;Rahman L,&nbsp;Rahman M M.&nbsp;Technical note: techniques to obtain improved predictions of global radiation from sunshine duration.&nbsp;Renewable Energy,&nbsp;1999,&nbsp;18(2):&nbsp;263&ndash;275

DOI

42
Chegaar M,&nbsp;Chibani A.&nbsp;Global solar radiation estimation in Algeria.&nbsp;Energy Conversion and Management,&nbsp;2001,&nbsp;42(8):&nbsp;967&ndash;973

DOI

43
Kholagli A.&nbsp;Solar radiation over Sudan—comparison of measured and predicted data.&nbsp;Solar Energy,&nbsp;1983,&nbsp;31(1):&nbsp;45&ndash;53

DOI

44
Ulgen K,&nbsp;Hepbasli A.&nbsp;Comparison of diffuse fraction of daily and monthly global radiation for Izmir, Turkey.&nbsp;Energy Sources,&nbsp;2003,&nbsp;25(7):&nbsp;637&ndash;649

DOI

Outlines

/