RESEARCH ARTICLE

Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture

  • Bayu PRABOWO 1 ,
  • Herri SUSANTO 2 ,
  • Kentaro UMEKI 3 ,
  • Mi YAN , 4 ,
  • Kunio YOSHIKAWA 5
Expand
  • 1. Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • 2. Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 3. Division of Energy Science, Luleå University of Technology, Luleå 971 87, Sweden
  • 4. Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • 5. Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Received date: 16 Feb 2015

Accepted date: 27 May 2015

Published date: 11 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper explored the feasibility and benefit of CO2 utilization as gasifying agent in the autothermal gasification process. The effects of CO2 injection on reaction temperature and producer gas composition were examined in a pilot scale downdraft gasifier by varying the CO2/C ratio from 0.6 to 1.6. O2 was injected at an equivalence ratio of approximately 0.33–0.38 for supplying heat through partial combustion. The results were also compared with those of air gasification. In general, the increase in CO2 injection resulted in the shift of combustion zone to the downstream of the gasifier. However, compared with that of air gasification, the long and distributed high temperature zones were obtained in CO2-O2 gasification with a CO2/C ratio of 0.6–1.2. The progress of the expected CO2 to CO conversion can be implied from the relatively insignificant decrease in CO fraction as the CO2/C ratio increased. The producer gas heating value of CO2-O2 gasification was consistently higher than that of air gasification. These results show the potential of CO2-O2 gasification for producing high quality producer gas in an efficient manner, and the necessity for more work to deeply imply the observation.

Cite this article

Bayu PRABOWO , Herri SUSANTO , Kentaro UMEKI , Mi YAN , Kunio YOSHIKAWA . Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture[J]. Frontiers in Energy, 2015 , 9(3) : 362 -370 . DOI: 10.1007/s11708-015-0375-5

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51406182) and Talented Young Scientists Program (No. INA-14-003).
1
Bridgwater A V. The technical and economic feasibility of biomass gasification for power generation. Fuel, 1995, 74(5): 631–653

DOI

2
Wang T, Li Y, Ma L, Wu C. Biomass to dimethyl ether by gasification/synthesis technology—an alternative biofuel production route. Frontiers in Energy, 2011, 5(3): 330–339

3
Keche A J R, Amba Prasad Rao G. Experimental evaluation of a 35 kVA downdraft gasifier. Frontiers in Energy, 2013, 7(3): 300–306

DOI

4
Ruiz J A, Juárez M C, Morales M P, Muñoz P, Mendívil M A. Biomass gasification for electricity generation: review of current technology barriers. Renewable & Sustainable Energy Reviews, 2013, 18: 174–183

DOI

5
Simone M, Barontini F, Nicolella C, Tognotti L. Gasification of pelletized biomass in a pilot scale downdraft gasifier. Bioresource Technology, 2012(116): 403–412

6
Wang L, Weller C L, Jones D D, Hanna M A. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy, 2008, 32(7): 573–581

DOI

7
Huang Z, Zhang J, Yue G. Status of domestic gasification technology in China. Frontiers in Energy, 2009, 3(3): 330–336

8
Jarungthammachote S, Dutta A. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management, 2008, 49(6): 1345–1356

DOI

9
Umeki K, Yamamoto K, Namioka T, Yoshikawa K. High temperature steam-only gasification of woody biomass. Applied Energy, 2010, 87(3): 791–798

DOI

10
Yoon H C, Cooper T, Steinfeld A. Non-catalytic autothermal gasification of woody biomass. International Journal of Hydrogen Energy, 2011, 36(13): 7852–7860

DOI

11
Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 2009, 35(2): 121–140

DOI

12
Zhang W, Zhang Y. The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH4-CO2 reforming. Frontiers of Chemical Science and Engineering, 2010, 4(2): 147–152

DOI

13
Gao S P, Zhao J T, Wang Z Q, Wang J F, Fang Y T, Huang J J. Effect of CO2 on pyrolysis behaviors of lignite. Journal of Fuel Chemistry and Technology, 2013, 41(3): 257–264

DOI

14
Gassner M, Maréchal F. Thermo-economic process model for thermochemical production of synthetic natural gas (SNG) from lignocellulosic biomass. Biomass and Bioenergy, 2009, 33(11): 1587–1604

DOI

15
Clausen L R, Elmegaard B, Houbak N. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 2010, 35(12): 4831–4842

DOI

16
van Vliet O P R, Faaij A P C, Turkenburg W C. Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Conversion and Management, 2009, 50(4): 855–876

DOI

17
Hanaoka T, Hiasa S, Edashige Y. Syngas production by CO2/O2 gasification of aquatic biomass. Fuel Processing Technology, 2013, 116: 9–15

DOI

18
Ahmed I I, Gupta A K. Characteristics of cardboard and paper gasification with CO2. Applied Energy, 2009, 86(12): 2626–2634

DOI

19
Jaffri G R, Zhang J Y. Catalytic gasification of Fujian anthracite in CO2 with black liquor by thermo gravimetry. Journal of Fuel Chemistry and Technology, 2007, 35(2): 128–135

DOI

20
Kwon E E, Castaldi M J. Urban energy mining from municipal solid waste (MSW) via the enhanced thermo-chemical process by carbon dioxide CO2 as a reaction medium. Bioresource Technology, 2012, 125: 23–29

DOI

21
Ahmed I I, Gupta A K. Kinetics of woodchips char gasification with steam and carbon dioxide. Applied Energy, 2011, 88(5): 1613–1619

DOI

22
Marquez-Montesinos F, Cordero T, Rodríguez-Mirasol J, Rodríguez J J. CO2 and steam gasification of a grapefruit skin char. Fuel, 2002, 81(4): 423–429

DOI

23
Renganathan T, Yadav M V, Pushpavanam S, Voolapalli R K, Cho Y S. CO2 utilization for gasification of carbonaceous feedstocks: a thermodynamic analysis. Chemical Engineering Science, 2012, 83: 159–170

DOI

24
Pohořelý M, Jeremiáš M, Svoboda K, Kameníková P, Skoblia S, Beňo Z. CO2 as moderator for biomass gasification. Fuel, 2014, 117(Part A): 198–205

25
Prabowo B, Umeki K, Yan M, Nakamura M R, Castaldi M J, Yoshikawa K. CO2-steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: laboratory-scale experiments and performance prediction. Applied Energy, 2014, 113: 670–679

DOI

26
Svoboda K, Pohořelý M, Jeremiáš M, Kameníková P, Hartman M, Skoblja S, Šyc M. Fluidized bed gasification of coal-oil and coal-water-oil slurries by oxygen-steam and oxygen-CO2 mixtures. Fuel Processing Technology, 2012, 95: 16–26

DOI

27
Zhao Y C, Zhang J Y, Liu H T, Tian J L, Li Y, Zheng C G. Thermodynamic equilibrium study of mineral elements evaporation in O2/CO2 recycle combustion. Journal of Fuel Chemistry and Technology, 2006, 34(6): 641–650

DOI

28
Chen W, Thanapal S S, Annamalai K, Ansley R J, Mirik M. Updraft gasification of mesquite fuel using air/steam and CO2/O2 mixtures. Energy Fuels, 2013, 27 (12): 7460–7469

29
Pettinau A, Frau C, Ferrara F. Performance assessment of a fixed-bed gasification pilot plant for combined power generation and hydrogen production. Fuel Processing Technology, 2011, 92(10): 1946–1953

DOI

30
Riaza J, Gil M V, Álvarez L, Pevida C, Pis J J, Rubiera F. Oxy-fuel combustion of coal and biomass blends. Energy, 2012, 41(1): 429–435

DOI

31
Wall T, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng C, Gupta R, Yamada T, Makino K, Yu J. An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research & Design, 2009, 87(8): 1003–1016

DOI

Outlines

/