REVIEW ARTICLE

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

  • T.S. Zhao ,
  • Y.S. Li ,
  • S.Y. Shen
Expand
  • Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China

Received date: 03 Aug 2010

Accepted date: 14 Sep 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm2 at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm2 at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

Cite this article

T.S. Zhao , Y.S. Li , S.Y. Shen . Anion-exchange membrane direct ethanol fuel cells: Status and perspective[J]. Frontiers in Energy, 2010 , 4(4) : 443 -458 . DOI: 10.1007/s11708-010-0127-5

Acknowledgements

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 623709).
T.S. Zhao is a Professor of Mechanical Engineering and the Director of Center for Sustainable Energy Technology at the Hong Kong University of Science & Technology (HKSUT). As an internationally renowned expert in energy technology, he presently focuses his research on fuel cells, multi-scale multiphase heat/mass transport with electrochemical reactions, and computational modeling. As of October 2010, he has published more than 150 papers in prestigious journals in the fields of energy science and engineering with SCI citations of more than 2850 times and H-index of 30. He has received a number of recognitions for his research and teaching, including the Bechtel Foundation Engineering Teaching Excellence Award at HKUST in 2004, the Overseas Distinguished Young Scholars Award by National Natural Science Foundation of China in 2006, Fellow of the American Society of Mechanical Engineers (ASME) in 2007, the Croucher Senior Fellowship award from the Croucher Foundation in 2008, and the Yangtze River Chair Professorship by the Chinese Ministry of Education in 2010. In the international community, Prof. Zhao serves as Editor-in-Chief of Advances in Fuel Cells, Series Editor, Energy & Environment (Royal Society of Chemistry), Asian Regional Editor of Applied Thermal Engineering, and as a member of the Editorial Board for more than 18 International Journals.
1
Prakash S, Kohl P A J. Performance of carbon dioxide vent for direct methanol fuel cells. Power Sources, 2009, 192(2): 429–434

DOI

2
Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal. B: Environ, 2006, 63(3,4): 187–193

3
Tu H C, Wang Y Y, Wan C C, Hsueh K L. Semi-empirical model to elucidate the effect of methanol crossover on direct methanol fuel cell. J Power Sources, 2006, 159(2): 1105–1114

DOI

4
Schultz T, Krewer U, Vidakovic T, Pfafferodt M, Christov M, Sundmacher K. Systematic analysis of the direct methanol fuel cell. J. Appl Electrochem, 2007, 37(1): 111–119

DOI

5
Scott K, Taama W M, Argyropoulos P, Sundmacher K. The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources, 1999, 83(1,2): 204–216

6
Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. ElectrochimiActa, 2009, 54(17): 4208–4215

7
Zhao H B, Yang J, Li L, Li H, Wang J L, Zhang Y M. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energy, 2009, 34 (9): 3908–3914

DOI

8
Song Y J, Han S B, Lee J M, Park K W. PtRu alloy nanostructure electrodes for methanol electrooxidation. J Alloy Compd, 2009, 473(1,2): 516–520

9
Han J H, Liu H T. Real time measurements of methanol crossover in a DMFC. J Power Sources, 2007, 164(1): 166–173

DOI

10
Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources, 1999, 84(1): 70–74

DOI

11
Ren X, Springer T E, Gottesfeld S. Water and Methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc, 2000, 147(1): 92–98

DOI

12
Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources, 2007, 170(1): 1–12

DOI

13
Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem, 1999, 472(2): 120–125

DOI

14
Pramanik H, Wragg A A, Basu S. Studies on operating parameters and cyclic voltammetry of a direct ethanol fuel cell. J Appl Electrochem, 2008, 38(9): 1321–1328

DOI

15
Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources, 2004, 131(1,2): 217–223

16
Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leonditis V, Kontou S, Tsiakaras P. Pt-based catalysts for direct ethanol fuel cellsInt J Hydrogen Energy, 2005, 30(9) : 995–1001

DOI

17
Colmenares L, Wang H, Yusys Z, Jiang L, Yan S, Sun G Q, Behm R J. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions. Electrochim Acta, 2006, 52(1): 221–233

DOI

18
Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Léger J M, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta, 2004, 49(22,23): 3901–3908

19
Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev, 2009, 109(9): 4183–4206

DOI

20
Antolini E, Gonzalez E R. Alkaline direct alcohol fuel cells, J Power Sources, 2010, 195(11): 3431–3450

DOI

21
Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 2005, 5(2): 187–200

DOI

22
Yu E H, Scott K, Reeve R W. electrochemical reduction of oxygen on carbon supported pt and pt/ru fuel cell electrodes in alkaline solutions. Fuel Cells, 2003, 3(4): 169–176

DOI

23
Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium ethanol-oxidation electrocatalyst with alloyed goldInt J Hydrogen Energy, 2010, 35(13): 6490–6500

DOI

24
Rao V, Hariyanto, Cremers C, Stimming U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry. Fuel Cells, 2007, 7(5): 417–423

DOI

25
Varcoe J R, Kizewski J P, Halepoto D M, Poynton S D, Slade R C T, Zhao F. Anion-Exchange Membranes. Encyclopedia of Electrochemical Power Sources, Amsterdam, 2009, 329–343

26
Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun, 2003, 5(8): 662–666

DOI

27
Yanagi H, Fukuta K. Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Trans, 2008, 16(2): 257–262

DOI

28
Agel E, Bouet J, Fauvarque J F. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources, 2001, 101(2): 267–274

DOI

29
Wan Y, Peppley B, Creber K A M, Bui V T, Halliop E. Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources, 2008, 185(1): 183–187

DOI

30
Xu T W, Liu Z M, Li Y, Yang W H. Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). J Membr Sci, 2008, 320(1,2): 232–239

31
Pandey A K, Goswami A, Sen D, Mazumder S, Childs R F. Formation and characterization of highly crosslinked anion-exchange membranes. J Membr Sci, 2003, 217(1,2): 117–130

32
Slade R C T, Varcoe J R. Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2005, 176(5,6): 585–597

33
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J, Apperley D C. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater, 2007, 19(10): 2686–2693

DOI

34
Varcoe J R, Slade R C T. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun, 2006, 8(5): 839–843

DOI

35
Grew K N, Chu D, Chiu W K S. Ionic equilibrium and transport in the alkaline anion exchange membrane. J. Electrochem Soc, 2010, 157(8): B1024–B1032

DOI

36
Wan Y, Peppley B, Creber K A M, Bui V T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells JPower Sources, 2010, 195(12): 3785–3793

DOI

37
Lu S F, Pan J, Huang A B, Zhuang L, Lu J T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. PNAS, 2008, 105(52): 20611–20614

DOI

38
Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 2009, 42(21): 8316–8321

DOI

39
Wang G G, Weng Y M, Chu D, Xie D, Chen R R. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J Membr Sci, 2009, 326(1): 4–8

DOI

40
Xiong Y, Liu Q L, Zhang Q G, Zhu A M. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources, 2008, 183(2): 447–453

DOI

41
Wang E D, Zhao T S, Yang W W. Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cellsInt J Hydrogen Energy, 2010, 35(5): 2183–2189

DOI

42
Wu C M, Wu Y H, Luo J Y, Xu T W, Fu Y X. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. J Membr Sci, 2010, 356(1,2): 96–104

43
Yang C C, Chiu S J, Lee K T, Chien W C, Lin C T, Huang C A. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources, 2008,184(1): 44–51

DOI

44
Lei L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci, 2005, 262(1,2): 1–4

45
Salmon E, Guinot S, Godet M, Fauvarque J F. Structural characterization of new poly(ethylene oxide)-based alkaline solid polymer electrolytes. J Appl Polym Sci, 1997, 65(3): 601–607

DOI

46
Hou H Y, Sun G Q, He R H, Sun B Y, Jin W, Liu H, Xin Q. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cellInt J Hydrogen Energy, 2008, 33(23): 7172–7176

47
Xiong Y, Liu Q L, Zeng Q H. Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources, 2009, 193(2): 541–546

DOI

48
Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochim Acta, 2007, 53(4): 1596–1603

DOI

49
Wu L, Xu T W. Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr. Sci, 2008, 322(2): 286–292

DOI

50
Varcoe J R, Beillard M, Halepoto D M, Kizewski J P, Poynton S D, Slade R C T. Membrane and Electrode Materials for Alkaline Membrane Fuel Cells. ECS Trans., 2008, 16(2): 1819–1834

DOI

51
Park J S, Park S H, Yim S D, Yoon Y G, Lee W Y, Kim C S. Performance of solid alkaline fuel cells employing anion-exchange membranes JPower Sources, 2008, 178 (2) 620–626

DOI

52
Fukuta K, Inoue H, Watanabe S, Yanagi H. In-situ Observation of CO2 through the Self-purging in Alkaline Membrane Fuel Cell (AMFC). ECS Trans,2009, 19(31): 23–27

DOI

53
Adams L A, Poynton S D, Tamain C, Slade R C T, Varcoe J R. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem, 2008, 1(1,2): 79–81

54
Matsui Y, Saito M, Tasaka A, Inaba M. Influence of carbon dioxide on the performance of anion-exchange membrane fuel cells. ECS Trans., 2010, 25(13) 105–110

DOI

55
Einsla B R, Chempath S, Pratt L R, Boncella J M, Rau J, Macomber C, Pivovar B S. Stability of cations for anion exchange membrane fuel cells. ECS Trans, 2007, 11(1): 1173–1180

DOI

56
Xiong Y, Liu Q L, Zhu A M, Huang S M, Zeng Q H. Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources, 2009, 186(2): 328–333

DOI

57
Wu Y H, Wu C M, Li Y, Xu T W, Fu Y X. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J Membr Sci, 2010, 350(1,2): 322–332

58
Yang C C, Chiu S J, Chien W C, Chiu S S. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources, 2010, 195(8): 2212–2219

DOI

59
Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr. Sci, 2007, 288(1,2): 51–60

60
Wu Y H, Wu C M, Xu T W, Yu F, Fu Y X. Novel anion-exchange organic–inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells. J Membr Sci, 2008, 321(2): 299–308

DOI

61
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources, 2007, 173(1): 194–199

DOI

62
Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun, 2000, 2(10): 697–702

DOI

63
Fu J, Qiao J L, Lv H, Ma J X, Yuan X Z, Wang H J. Alkali doped poly (vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: Ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans, 2010, 25(13): 15–23

DOI

64
Leykin A Y, Shkrebko O A, Tarasevich M R. Ethanol crossover through alkali-doped polybenzimidazole membrane. J Membr. Sci, 2009, 328(1,2): 86–89

65
Hou H Y, Sun G Q, He R H, Wu Z M, Sun B Y. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources, 2008, 182(1): 95–99

DOI

66
Varcoe €J €R. €Investigations €of €the€ ex€ situ€ ionic€ conductivities€ at 30°C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys Chem Chem Phys, 2007, 9(12): 1479–1486

DOI

67
Li Y S, Zhao T S, Yang W W. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energy, 2010, 35(11): 5656–5665

DOI

68
Stoica D, Alloin F, Marais S, Langevin D, Chappey C, Judeinstein P. Polyepichlorydrine membrane for alkaline fuel cell: Sorption and conduction properties. J Phys Chem B, 2008, 112(39): 12338–12346

DOI

69
Abuin G C, Nonjola P, Franceschini E A, Izraelevitch F H, Mathe M K, Corti H R. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cellsInt J Hydrogen Energy, 2010, 35(11): 5849–5854

DOI

70
Zawodzinski T A, Springer T E, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc, 1993, 140(7): 1981–1985

DOI

71
Choi P, Datta R. Sorption in proton-exchange membranes. J Electrochem Soc, 2003,150(12): E601–E607

DOI

72
Colmati F, Antolini E, Gonzalez E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources, 2006, 157(1): 98–103

DOI

73
Li H Q, Sun G Q, Cao L, Jiang L H, Xin Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta, 2007, 52(24): 6622–6629

DOI

74
Shen Q M, Min Q H, Shi J J, Jiang L P, Zhang J R, Hou W H, Zhu J J. Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C, 2009, 113(4): 1267–1273

DOI

75
Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem Commun, 2009, 11(10): 1896–1899

DOI

76
Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagège A, Audonet F, Remita H. Palladium nanowires synthesized in hexagonal mesophases: application in ethanol electrooxidation. Chem Mater, 2009, 21(8): 1612–1617

DOI

77
Xu C W, Shen P K, Liu Y L. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources, 2007,164(2): 527–531

DOI

78
Hu F P, Chen C L, Wang Z Y, Wei G Y. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta, 2006, 52(3): 1087–1091

DOI

79
Chu D B, Wang J, Wang S X, Zha L G, He J G, Hou Y Y, Yan Y G, Lin H S, Tian Z W. High activity of Pd–In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun, 2009, 10(6): 955–958

DOI

80
He Q G, Chen W, Mukerjee S, Chen S W, Laufek F. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources, 2009,187(2): 298–304

DOI

81
Zhu L D, Zhao T S, Xu J B, Liang Z X. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources, 2009, 187(1): 80–84

DOI

82
Ksar F, Ramos L, Keita B, Nadjo L, Beaunier P, Remita H. bimetallic palladium-gold nanostructures: application in ethanol oxidation. Chem Mater, 2009, 21(15): 3677–3683

DOI

83
Liu Z L, Zhao B, Guo C L, Sun Y J, Xu F G, Yang H B, Li Z. Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surfaceJ Phys Chem C, 2009, 113(38): 16766–16711

DOI

84
Nguyen S T, Law H M, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B, 2009, 91(1,2): 507–515

85
Wang Y, Nguyen T S, Liu X W, Wang X. Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources, 2010,195(9): 2619–2622

DOI

86
Chen Y G, Zhuang L, Lu J T. Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chin. J Catal, 2007, 28(10): 870–874

DOI

87
Jou L S, Chang J K, Twhang T J, Sun I W. Electrodeposition of palladium-copper€films€from€1-ethyl-3-methylimidazolium€chloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc, 2009,156(6): D193–D197

DOI

88
Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon, 2009, 47(1): 271–278

DOI

89
Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources, 2010, 195(4): 1001–1006

DOI

90
Qiu C C, Shang R, Y F Xie, Bu Y R, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd–Ni thin films towards the oxidation of methanol and ethanol. Mater Chem Phys, 2010, 120(2,3): 323–330

91
Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti M L, Innocenti M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem, 2009, 2(1): 99–112

DOI

92
Zheng H T, Li Y L, Chen S X, Shen P K. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources, 2006, 163(1): 371–375

DOI

93
Xu C W, Chen L Q, Shen P K, Liu Y L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun, 2007, 9(5): 997–1001

DOI

94
Yuan D S, Xu C W, Liu Y L, Tan S Z, Wang X, Wei Z D, Shen P K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. Electrochem Commun, 2007, 9(10): 2473–2478

DOI

95
Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources, 2007,173(2): 877–881

DOI

96
Hu F P, Cui G F, Wei Z D, Shen P K. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubesElectrochem Commun, 2008, 10(9): 1303–1306

DOI

97
Wang Z Y, Hu F P, Shen P K. Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. ElectrochemCommun, 2006, 8(11): 1764–1768

DOI

98
Hu F P, Ding F W, Song S Q, Shen P K. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources, 2006, 163(1): 415–419

DOI

99
El-Shafei A A, Elhafeez A M, Mostafa H A. Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J Solid State Electrochem, 2010, 14(2): 185–190

DOI

100
Pandey R K, Lakshminarayanan V. Enhanced electrocatalytic activity of Pd-Dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C, 2010, 114(18): 8507–8514

DOI

101
Pandey R K, Lakshminarayanan V. Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J Phys Chem C, 2009, 113(52): 21596–21603

DOI

102
Su L, Jia W Z, Schempf A, Ding Y, Lei Y. free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem C, 2009, 113(36): 16174–16180

DOI

103
Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175(1–4) : 797–803

DOI

104
Mann J, Yao N, Bocarsly A B. Characterization and analysis of new catalysts for a direct ethanol fuel cell. Langmuir, 2006, 22(25): 10432–10436

DOI

105
Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta, 2009, 54(8): 2203–2208

DOI

106
Cui G F, Song S Q, Shen P K, Kowal A, Bianchini C. First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C, 2009, 113(35): 15639–15642

DOI

107
Fang X, Wang L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources, 2010, 195(5): 1375–1378

DOI

108
Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta, 2010 (in press)

109
Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources, 2009, 190(2): 241–251

DOI

110
Markovic N, Gasteiger H. Kinetics of oxygen reduction on Pt(Hkl) electrodes–Implications for the crystallite size effect with supported pt electrocatalysts. J Electrochem Soc, 1997, 144(5): 1591–1597

DOI

111
Blizanac B B, Ross P N, Marković N M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: Rotating ring diskAg(hkl) studies. J Phys Chem B, 2006, 110(10): 4735–4741

DOI

112
Blizanac B B, Ross P N, Marković N M. Oxygen electroreduction on Ag(1 1 1): The pH effect. Electrochim Acta, 2007, 52(6): 2264–2271

DOI

113
Geniès L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta, 1998, 44(8,9): 1317–1327

114
Xu J B, Zhao T S, Li Y S, Yang W W. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy, 2010, 35(18): 9693–9700

DOI

115
Xiong L F, Manthiram A. Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cellsJ Mater Chem, 2004, 14: 1454–1460

DOI

116
Demarconnay L, Coutanceau C, Léger J M. Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta, 2008, 53(8): 3232–3241

DOI

117
Gülzow E, Wagner N, Schulze M. preparation of gas diffusion electrodes with silver catalysts for alkaline fuel cells. Fuel Cells, 2003, 3(1,2): 67–72

118
Demarconnay L, Coutanceau C, Léger J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts- effect of the presence of methanol. Electrochim Acta, 2004, 49(25): 4513–4521

DOI

119
Guo J S, Hsu A, Chu D, Chen R R. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C, 2010, 114(10): 4324–4330

DOI

120
Mao L Q, Zhang D, Sotomura T, Nakatsu K. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta, 2003, 48(8): 1015–1021

DOI

121
Calegaro M L, Lima F H B, Ticianelli E A. Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, J Power Sources, 2006,158(1): 735–739

DOI

122
Fukuda M, Iida C, Nakayama M. One-step through-mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction. Mater Res Bull, 2009, 44(6): 1323–1327

DOI

123
Hermann V, Dutriat D, Müller S, Comninellis C. Mechanistic Studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim. Acta, 2000, 46(2,3): 365–372

124
Nissinen T, Valo T, Gasik M, Rantanen J, Lampinen M. Microwave synthesis of catalyst spinel MnCo2O4 for alkaline fuel cell. J Power Sources, 2002, 106(1,2): 109–115

125
Chang Y M, Wu P W, Eu C Y, Hsieh Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources, 2009, 189(2): 1003–1007

DOI

126
Restovic A, Ríos E, Barbato S, Ortiz J, Gautier J L. Oxygen reduction in alkaline medium at thin MnxCo3-xO4 (0≤x≤1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem, 2002, 522(2): 141–151

DOI

127
Koninck M D, Poirier S C, Marsan B. Electrochemical characterization for the oxygen reduction reaction. J Electrochem Soc, 2007, 154(4): A381–A388

128
Ríos E, Abarca S, Daccarett P, Cong H N, Martel D, Marco J F, Gancedo J R, Gautier J L. Electrocatalysis of oxygen reduction on CuxMn3-xO4 (1.0<x<1.4) spinel particles/polypyrrol composite electrodes. Int J Hydrogen Energy, 2008, 33(19): 4945–4954

129
Gojković S L, Gupta S, Savinell R F. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction. J Electroanal Chem, 1999, 462 (1) : 63–72

DOI

130
Mocchi C, Trasatti S. Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. J Mol Catal A, 2003, 204–205: 713–720

131
Tributsch H, Koslowski U I, Dorbandt I. Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. ElectrochimActa, 2008, 53(5): 2198–2209

DOI

132
Lima F H B, Ticianelli E A. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. ElectrochimActa, 2004, 49(24): 4091–4099

DOI

133
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C, 2007, 111(1): 404–410

DOI

134
Coutanceau C, Demarconnay L, Lamy C, Léger J M. Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources, 2006, 156(1): 14–19

DOI

135
Chatenet M, Bultel L G, Aurousseau M, Durand R, Andolfatto F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J Appl Electrochem, 2002, 32(10): 1131–1140

DOI

136
Furuva N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim Acta, 2000, 45(25,26): 4251–4256

137
Wagner N, Schulze M, Gülzow E. Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources, 2004, 127(1,2): 264–272

138
Okajima K, Nabekura K, Kondoh T, Sudoh M. Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chloralkali membrane cell. J Electrochem Soc, 2005, 152(8): D117–D120

DOI

139
Lee H K, Shim J P, Shim M J, Kim S W, Lee J S. Oxygen reduction behavior with silver alloy catalyst in alkaline media. Mater Chem Phys, 1996, 45(3): 238–242

DOI

140
Lima F H B, Castro J F R, Ticianelli E A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources, 2006, 161(2): 806–812

DOI

141
Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun, 2006, 8(4): 588–594

DOI

142
Li Y S, Zhao T S, Liang Z X. Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources, 2009, 187(2): 387–392

DOI

143
Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K. Direct ethanol fuel cells using an anion exchange membrane. J Power Sources, 2008, 185(2): 621–626

DOI

144
Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun, 2009, 11(5): 1077–1080

DOI

145
Jiang L H, Sun G Q, Sun S G, Liu J G, Tang S H, Li H Q, Zhou B, Xin Q. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. ElectrochimActa, 2005, 50(27): 5384–5389

DOI

146
Modestov A D, Tarasevich M R, Leykin A Y, Filimonov V Y. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources, 2009, 188(2): 502–506

DOI

147
Li Y S, Zhao T S, Liang Z X. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources, 2009, 190(2): 223–229

DOI

148
Miyazaki K, Abe T, Nishio K, Nakanishi H, Ogumi Z. Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane fuel cells. J Power Sources, 2010, 195(19): 6500–6503

DOI

149
Li Y S, Zhao T S, Chen R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J Power Sources, 2011, 196(1): 133–139

DOI

Outlines

/