Anion-exchange membrane direct ethanol fuel cells: Status and perspective
T.S. Zhao, Y.S. Li, S.Y. Shen
Anion-exchange membrane direct ethanol fuel cells: Status and perspective
Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm2 at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm2 at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.
fuel cell / direct ethanol fuel cells / anion-exchange membrane / ethanol oxidation reaction / oxygen reduction reaction / cell performance
[1] |
Prakash S, Kohl P A J. Performance of carbon dioxide vent for direct methanol fuel cells. Power Sources, 2009, 192(2): 429–434
CrossRef
Google scholar
|
[2] |
Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal. B: Environ, 2006, 63(3,4): 187–193
|
[3] |
Tu H C, Wang Y Y, Wan C C, Hsueh K L. Semi-empirical model to elucidate the effect of methanol crossover on direct methanol fuel cell. J Power Sources, 2006, 159(2): 1105–1114
CrossRef
Google scholar
|
[4] |
Schultz T, Krewer U, Vidakovic T, Pfafferodt M, Christov M, Sundmacher K. Systematic analysis of the direct methanol fuel cell. J. Appl Electrochem, 2007, 37(1): 111–119
CrossRef
Google scholar
|
[5] |
Scott K, Taama W M, Argyropoulos P, Sundmacher K. The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources, 1999, 83(1,2): 204–216
|
[6] |
Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. ElectrochimiActa, 2009, 54(17): 4208–4215
|
[7] |
Zhao H B, Yang J, Li L, Li H, Wang J L, Zhang Y M. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energy, 2009, 34 (9): 3908–3914
CrossRef
Google scholar
|
[8] |
Song Y J, Han S B, Lee J M, Park K W. PtRu alloy nanostructure electrodes for methanol electrooxidation. J Alloy Compd, 2009, 473(1,2): 516–520
|
[9] |
Han J H, Liu H T. Real time measurements of methanol crossover in a DMFC. J Power Sources, 2007, 164(1): 166–173
CrossRef
Google scholar
|
[10] |
Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources, 1999, 84(1): 70–74
CrossRef
Google scholar
|
[11] |
Ren X, Springer T E, Gottesfeld S. Water and Methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc, 2000, 147(1): 92–98
CrossRef
Google scholar
|
[12] |
Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources, 2007, 170(1): 1–12
CrossRef
Google scholar
|
[13] |
Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem, 1999, 472(2): 120–125
CrossRef
Google scholar
|
[14] |
Pramanik H, Wragg A A, Basu S. Studies on operating parameters and cyclic voltammetry of a direct ethanol fuel cell. J Appl Electrochem, 2008, 38(9): 1321–1328
CrossRef
Google scholar
|
[15] |
Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources, 2004, 131(1,2): 217–223
|
[16] |
Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leonditis V, Kontou S, Tsiakaras P. Pt-based catalysts for direct ethanol fuel cellsInt J Hydrogen Energy, 2005, 30(9) : 995–1001
CrossRef
Google scholar
|
[17] |
Colmenares L, Wang H, Yusys Z, Jiang L, Yan S, Sun G Q, Behm R J. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions. Electrochim Acta, 2006, 52(1): 221–233
CrossRef
Google scholar
|
[18] |
Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Léger J M, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta, 2004, 49(22,23): 3901–3908
|
[19] |
Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev, 2009, 109(9): 4183–4206
CrossRef
Google scholar
|
[20] |
Antolini E, Gonzalez E R. Alkaline direct alcohol fuel cells, J Power Sources, 2010, 195(11): 3431–3450
CrossRef
Google scholar
|
[21] |
Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 2005, 5(2): 187–200
CrossRef
Google scholar
|
[22] |
Yu E H, Scott K, Reeve R W. electrochemical reduction of oxygen on carbon supported pt and pt/ru fuel cell electrodes in alkaline solutions. Fuel Cells, 2003, 3(4): 169–176
CrossRef
Google scholar
|
[23] |
Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium ethanol-oxidation electrocatalyst with alloyed goldInt J Hydrogen Energy, 2010, 35(13): 6490–6500
CrossRef
Google scholar
|
[24] |
Rao V, Hariyanto, Cremers C, Stimming U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry. Fuel Cells, 2007, 7(5): 417–423
CrossRef
Google scholar
|
[25] |
Varcoe J R, Kizewski J P, Halepoto D M, Poynton S D, Slade R C T, Zhao F. Anion-Exchange Membranes. Encyclopedia of Electrochemical Power Sources, Amsterdam, 2009, 329–343
|
[26] |
Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun, 2003, 5(8): 662–666
CrossRef
Google scholar
|
[27] |
Yanagi H, Fukuta K. Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Trans, 2008, 16(2): 257–262
CrossRef
Google scholar
|
[28] |
Agel E, Bouet J, Fauvarque J F. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources, 2001, 101(2): 267–274
CrossRef
Google scholar
|
[29] |
Wan Y, Peppley B, Creber K A M, Bui V T, Halliop E. Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources, 2008, 185(1): 183–187
CrossRef
Google scholar
|
[30] |
Xu T W, Liu Z M, Li Y, Yang W H. Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). J Membr Sci, 2008, 320(1,2): 232–239
|
[31] |
Pandey A K, Goswami A, Sen D, Mazumder S, Childs R F. Formation and characterization of highly crosslinked anion-exchange membranes. J Membr Sci, 2003, 217(1,2): 117–130
|
[32] |
Slade R C T, Varcoe J R. Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2005, 176(5,6): 585–597
|
[33] |
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J, Apperley D C. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater, 2007, 19(10): 2686–2693
CrossRef
Google scholar
|
[34] |
Varcoe J R, Slade R C T. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun, 2006, 8(5): 839–843
CrossRef
Google scholar
|
[35] |
Grew K N, Chu D, Chiu W K S. Ionic equilibrium and transport in the alkaline anion exchange membrane. J. Electrochem Soc, 2010, 157(8): B1024–B1032
CrossRef
Google scholar
|
[36] |
Wan Y, Peppley B, Creber K A M, Bui V T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells JPower Sources, 2010, 195(12): 3785–3793
CrossRef
Google scholar
|
[37] |
Lu S F, Pan J, Huang A B, Zhuang L, Lu J T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. PNAS, 2008, 105(52): 20611–20614
CrossRef
Google scholar
|
[38] |
Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 2009, 42(21): 8316–8321
CrossRef
Google scholar
|
[39] |
Wang G G, Weng Y M, Chu D, Xie D, Chen R R. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J Membr Sci, 2009, 326(1): 4–8
CrossRef
Google scholar
|
[40] |
Xiong Y, Liu Q L, Zhang Q G, Zhu A M. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources, 2008, 183(2): 447–453
CrossRef
Google scholar
|
[41] |
Wang E D, Zhao T S, Yang W W. Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cellsInt J Hydrogen Energy, 2010, 35(5): 2183–2189
CrossRef
Google scholar
|
[42] |
Wu C M, Wu Y H, Luo J Y, Xu T W, Fu Y X. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. J Membr Sci, 2010, 356(1,2): 96–104
|
[43] |
Yang C C, Chiu S J, Lee K T, Chien W C, Lin C T, Huang C A. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources, 2008,184(1): 44–51
CrossRef
Google scholar
|
[44] |
Lei L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci, 2005, 262(1,2): 1–4
|
[45] |
Salmon E, Guinot S, Godet M, Fauvarque J F. Structural characterization of new poly(ethylene oxide)-based alkaline solid polymer electrolytes. J Appl Polym Sci, 1997, 65(3): 601–607
CrossRef
Google scholar
|
[46] |
Hou H Y, Sun G Q, He R H, Sun B Y, Jin W, Liu H, Xin Q. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cellInt J Hydrogen Energy, 2008, 33(23): 7172–7176
|
[47] |
Xiong Y, Liu Q L, Zeng Q H. Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources, 2009, 193(2): 541–546
CrossRef
Google scholar
|
[48] |
Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochim Acta, 2007, 53(4): 1596–1603
CrossRef
Google scholar
|
[49] |
Wu L, Xu T W. Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr. Sci, 2008, 322(2): 286–292
CrossRef
Google scholar
|
[50] |
Varcoe J R, Beillard M, Halepoto D M, Kizewski J P, Poynton S D, Slade R C T. Membrane and Electrode Materials for Alkaline Membrane Fuel Cells. ECS Trans., 2008, 16(2): 1819–1834
CrossRef
Google scholar
|
[51] |
Park J S, Park S H, Yim S D, Yoon Y G, Lee W Y, Kim C S. Performance of solid alkaline fuel cells employing anion-exchange membranes JPower Sources, 2008, 178 (2) 620–626
CrossRef
Google scholar
|
[52] |
Fukuta K, Inoue H, Watanabe S, Yanagi H. In-situ Observation of CO2 through the Self-purging in Alkaline Membrane Fuel Cell (AMFC). ECS Trans,2009, 19(31): 23–27
CrossRef
Google scholar
|
[53] |
Adams L A, Poynton S D, Tamain C, Slade R C T, Varcoe J R. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem, 2008, 1(1,2): 79–81
|
[54] |
Matsui Y, Saito M, Tasaka A, Inaba M. Influence of carbon dioxide on the performance of anion-exchange membrane fuel cells. ECS Trans., 2010, 25(13) 105–110
CrossRef
Google scholar
|
[55] |
Einsla B R, Chempath S, Pratt L R, Boncella J M, Rau J, Macomber C, Pivovar B S. Stability of cations for anion exchange membrane fuel cells. ECS Trans, 2007, 11(1): 1173–1180
CrossRef
Google scholar
|
[56] |
Xiong Y, Liu Q L, Zhu A M, Huang S M, Zeng Q H. Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources, 2009, 186(2): 328–333
CrossRef
Google scholar
|
[57] |
Wu Y H, Wu C M, Li Y, Xu T W, Fu Y X. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J Membr Sci, 2010, 350(1,2): 322–332
|
[58] |
Yang C C, Chiu S J, Chien W C, Chiu S S. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources, 2010, 195(8): 2212–2219
CrossRef
Google scholar
|
[59] |
Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr. Sci, 2007, 288(1,2): 51–60
|
[60] |
Wu Y H, Wu C M, Xu T W, Yu F, Fu Y X. Novel anion-exchange organic–inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells. J Membr Sci, 2008, 321(2): 299–308
CrossRef
Google scholar
|
[61] |
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources, 2007, 173(1): 194–199
CrossRef
Google scholar
|
[62] |
Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun, 2000, 2(10): 697–702
CrossRef
Google scholar
|
[63] |
Fu J, Qiao J L, Lv H, Ma J X, Yuan X Z, Wang H J. Alkali doped poly (vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: Ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans, 2010, 25(13): 15–23
CrossRef
Google scholar
|
[64] |
Leykin A Y, Shkrebko O A, Tarasevich M R. Ethanol crossover through alkali-doped polybenzimidazole membrane. J Membr. Sci, 2009, 328(1,2): 86–89
|
[65] |
Hou H Y, Sun G Q, He R H, Wu Z M, Sun B Y. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources, 2008, 182(1): 95–99
CrossRef
Google scholar
|
[66] |
Varcoe J R. Investigations of the ex situ ionic conductivities at 30°C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys Chem Chem Phys, 2007, 9(12): 1479–1486
CrossRef
Google scholar
|
[67] |
Li Y S, Zhao T S, Yang W W. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energy, 2010, 35(11): 5656–5665
CrossRef
Google scholar
|
[68] |
Stoica D, Alloin F, Marais S, Langevin D, Chappey C, Judeinstein P. Polyepichlorydrine membrane for alkaline fuel cell: Sorption and conduction properties. J Phys Chem B, 2008, 112(39): 12338–12346
CrossRef
Google scholar
|
[69] |
Abuin G C, Nonjola P, Franceschini E A, Izraelevitch F H, Mathe M K, Corti H R. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cellsInt J Hydrogen Energy, 2010, 35(11): 5849–5854
CrossRef
Google scholar
|
[70] |
Zawodzinski T A, Springer T E, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc, 1993, 140(7): 1981–1985
CrossRef
Google scholar
|
[71] |
Choi P, Datta R. Sorption in proton-exchange membranes. J Electrochem Soc, 2003,150(12): E601–E607
CrossRef
Google scholar
|
[72] |
Colmati F, Antolini E, Gonzalez E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources, 2006, 157(1): 98–103
CrossRef
Google scholar
|
[73] |
Li H Q, Sun G Q, Cao L, Jiang L H, Xin Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta, 2007, 52(24): 6622–6629
CrossRef
Google scholar
|
[74] |
Shen Q M, Min Q H, Shi J J, Jiang L P, Zhang J R, Hou W H, Zhu J J. Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C, 2009, 113(4): 1267–1273
CrossRef
Google scholar
|
[75] |
Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem Commun, 2009, 11(10): 1896–1899
CrossRef
Google scholar
|
[76] |
Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagège A, Audonet F, Remita H. Palladium nanowires synthesized in hexagonal mesophases: application in ethanol electrooxidation. Chem Mater, 2009, 21(8): 1612–1617
CrossRef
Google scholar
|
[77] |
Xu C W, Shen P K, Liu Y L. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources, 2007,164(2): 527–531
CrossRef
Google scholar
|
[78] |
Hu F P, Chen C L, Wang Z Y, Wei G Y. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta, 2006, 52(3): 1087–1091
CrossRef
Google scholar
|
[79] |
Chu D B, Wang J, Wang S X, Zha L G, He J G, Hou Y Y, Yan Y G, Lin H S, Tian Z W. High activity of Pd–In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun, 2009, 10(6): 955–958
CrossRef
Google scholar
|
[80] |
He Q G, Chen W, Mukerjee S, Chen S W, Laufek F. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources, 2009,187(2): 298–304
CrossRef
Google scholar
|
[81] |
Zhu L D, Zhao T S, Xu J B, Liang Z X. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources, 2009, 187(1): 80–84
CrossRef
Google scholar
|
[82] |
Ksar F, Ramos L, Keita B, Nadjo L, Beaunier P, Remita H. bimetallic palladium-gold nanostructures: application in ethanol oxidation. Chem Mater, 2009, 21(15): 3677–3683
CrossRef
Google scholar
|
[83] |
Liu Z L, Zhao B, Guo C L, Sun Y J, Xu F G, Yang H B, Li Z. Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surfaceJ Phys Chem C, 2009, 113(38): 16766–16711
CrossRef
Google scholar
|
[84] |
Nguyen S T, Law H M, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B, 2009, 91(1,2): 507–515
|
[85] |
Wang Y, Nguyen T S, Liu X W, Wang X. Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources, 2010,195(9): 2619–2622
CrossRef
Google scholar
|
[86] |
Chen Y G, Zhuang L, Lu J T. Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chin. J Catal, 2007, 28(10): 870–874
CrossRef
Google scholar
|
[87] |
Jou L S, Chang J K, Twhang T J, Sun I W. Electrodeposition of palladium-copperfilmsfrom1-ethyl-3-methylimidazoliumchloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc, 2009,156(6): D193–D197
CrossRef
Google scholar
|
[88] |
Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon, 2009, 47(1): 271–278
CrossRef
Google scholar
|
[89] |
Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources, 2010, 195(4): 1001–1006
CrossRef
Google scholar
|
[90] |
Qiu C C, Shang R, Y F Xie, Bu Y R, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd–Ni thin films towards the oxidation of methanol and ethanol. Mater Chem Phys, 2010, 120(2,3): 323–330
|
[91] |
Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti M L, Innocenti M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem, 2009, 2(1): 99–112
CrossRef
Google scholar
|
[92] |
Zheng H T, Li Y L, Chen S X, Shen P K. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources, 2006, 163(1): 371–375
CrossRef
Google scholar
|
[93] |
Xu C W, Chen L Q, Shen P K, Liu Y L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun, 2007, 9(5): 997–1001
CrossRef
Google scholar
|
[94] |
Yuan D S, Xu C W, Liu Y L, Tan S Z, Wang X, Wei Z D, Shen P K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. Electrochem Commun, 2007, 9(10): 2473–2478
CrossRef
Google scholar
|
[95] |
Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources, 2007,173(2): 877–881
CrossRef
Google scholar
|
[96] |
Hu F P, Cui G F, Wei Z D, Shen P K. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubesElectrochem Commun, 2008, 10(9): 1303–1306
CrossRef
Google scholar
|
[97] |
Wang Z Y, Hu F P, Shen P K. Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. ElectrochemCommun, 2006, 8(11): 1764–1768
CrossRef
Google scholar
|
[98] |
Hu F P, Ding F W, Song S Q, Shen P K. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources, 2006, 163(1): 415–419
CrossRef
Google scholar
|
[99] |
El-Shafei A A, Elhafeez A M, Mostafa H A. Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J Solid State Electrochem, 2010, 14(2): 185–190
CrossRef
Google scholar
|
[100] |
Pandey R K, Lakshminarayanan V. Enhanced electrocatalytic activity of Pd-Dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C, 2010, 114(18): 8507–8514
CrossRef
Google scholar
|
[101] |
Pandey R K, Lakshminarayanan V. Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J Phys Chem C, 2009, 113(52): 21596–21603
CrossRef
Google scholar
|
[102] |
Su L, Jia W Z, Schempf A, Ding Y, Lei Y. free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem C, 2009, 113(36): 16174–16180
CrossRef
Google scholar
|
[103] |
Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175(1–4) : 797–803
CrossRef
Google scholar
|
[104] |
Mann J, Yao N, Bocarsly A B. Characterization and analysis of new catalysts for a direct ethanol fuel cell. Langmuir, 2006, 22(25): 10432–10436
CrossRef
Google scholar
|
[105] |
Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta, 2009, 54(8): 2203–2208
CrossRef
Google scholar
|
[106] |
Cui G F, Song S Q, Shen P K, Kowal A, Bianchini C. First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C, 2009, 113(35): 15639–15642
CrossRef
Google scholar
|
[107] |
Fang X, Wang L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources, 2010, 195(5): 1375–1378
CrossRef
Google scholar
|
[108] |
Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta, 2010 (in press)
|
[109] |
Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources, 2009, 190(2): 241–251
CrossRef
Google scholar
|
[110] |
Markovic N, Gasteiger H. Kinetics of oxygen reduction on Pt(Hkl) electrodes–Implications for the crystallite size effect with supported pt electrocatalysts. J Electrochem Soc, 1997, 144(5): 1591–1597
CrossRef
Google scholar
|
[111] |
Blizanac B B, Ross P N, Marković N M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: Rotating ring diskAg(hkl) studies. J Phys Chem B, 2006, 110(10): 4735–4741
CrossRef
Google scholar
|
[112] |
Blizanac B B, Ross P N, Marković N M. Oxygen electroreduction on Ag(1 1 1): The pH effect. Electrochim Acta, 2007, 52(6): 2264–2271
CrossRef
Google scholar
|
[113] |
Geniès L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta, 1998, 44(8,9): 1317–1327
|
[114] |
Xu J B, Zhao T S, Li Y S, Yang W W. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy, 2010, 35(18): 9693–9700
CrossRef
Google scholar
|
[115] |
Xiong L F, Manthiram A. Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cellsJ Mater Chem, 2004, 14: 1454–1460
CrossRef
Google scholar
|
[116] |
Demarconnay L, Coutanceau C, Léger J M. Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta, 2008, 53(8): 3232–3241
CrossRef
Google scholar
|
[117] |
Gülzow E, Wagner N, Schulze M. preparation of gas diffusion electrodes with silver catalysts for alkaline fuel cells. Fuel Cells, 2003, 3(1,2): 67–72
|
[118] |
Demarconnay L, Coutanceau C, Léger J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts- effect of the presence of methanol. Electrochim Acta, 2004, 49(25): 4513–4521
CrossRef
Google scholar
|
[119] |
Guo J S, Hsu A, Chu D, Chen R R. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C, 2010, 114(10): 4324–4330
CrossRef
Google scholar
|
[120] |
Mao L Q, Zhang D, Sotomura T, Nakatsu K. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta, 2003, 48(8): 1015–1021
CrossRef
Google scholar
|
[121] |
Calegaro M L, Lima F H B, Ticianelli E A. Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, J Power Sources, 2006,158(1): 735–739
CrossRef
Google scholar
|
[122] |
Fukuda M, Iida C, Nakayama M. One-step through-mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction. Mater Res Bull, 2009, 44(6): 1323–1327
CrossRef
Google scholar
|
[123] |
Hermann V, Dutriat D, Müller S, Comninellis C. Mechanistic Studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim. Acta, 2000, 46(2,3): 365–372
|
[124] |
Nissinen T, Valo T, Gasik M, Rantanen J, Lampinen M. Microwave synthesis of catalyst spinel MnCo2O4 for alkaline fuel cell. J Power Sources, 2002, 106(1,2): 109–115
|
[125] |
Chang Y M, Wu P W, Eu C Y, Hsieh Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources, 2009, 189(2): 1003–1007
CrossRef
Google scholar
|
[126] |
Restovic A, Ríos E, Barbato S, Ortiz J, Gautier J L. Oxygen reduction in alkaline medium at thin MnxCo3-xO4 (0≤x≤1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem, 2002, 522(2): 141–151
CrossRef
Google scholar
|
[127] |
Koninck M D, Poirier S C, Marsan B. Electrochemical characterization for the oxygen reduction reaction. J Electrochem Soc, 2007, 154(4): A381–A388
|
[128] |
Ríos E, Abarca S, Daccarett P, Cong H N, Martel D, Marco J F, Gancedo J R, Gautier J L. Electrocatalysis of oxygen reduction on CuxMn3-xO4 (1.0<x<1.4) spinel particles/polypyrrol composite electrodes. Int J Hydrogen Energy, 2008, 33(19): 4945–4954
|
[129] |
Gojković S L, Gupta S, Savinell R F. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction. J Electroanal Chem, 1999, 462 (1) : 63–72
CrossRef
Google scholar
|
[130] |
Mocchi C, Trasatti S. Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. J Mol Catal A, 2003, 204–205: 713–720
|
[131] |
Tributsch H, Koslowski U I, Dorbandt I. Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. ElectrochimActa, 2008, 53(5): 2198–2209
CrossRef
Google scholar
|
[132] |
Lima F H B, Ticianelli E A. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. ElectrochimActa, 2004, 49(24): 4091–4099
CrossRef
Google scholar
|
[133] |
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C, 2007, 111(1): 404–410
CrossRef
Google scholar
|
[134] |
Coutanceau C, Demarconnay L, Lamy C, Léger J M. Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources, 2006, 156(1): 14–19
CrossRef
Google scholar
|
[135] |
Chatenet M, Bultel L G, Aurousseau M, Durand R, Andolfatto F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J Appl Electrochem, 2002, 32(10): 1131–1140
CrossRef
Google scholar
|
[136] |
Furuva N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim Acta, 2000, 45(25,26): 4251–4256
|
[137] |
Wagner N, Schulze M, Gülzow E. Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources, 2004, 127(1,2): 264–272
|
[138] |
Okajima K, Nabekura K, Kondoh T, Sudoh M. Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chloralkali membrane cell. J Electrochem Soc, 2005, 152(8): D117–D120
CrossRef
Google scholar
|
[139] |
Lee H K, Shim J P, Shim M J, Kim S W, Lee J S. Oxygen reduction behavior with silver alloy catalyst in alkaline media. Mater Chem Phys, 1996, 45(3): 238–242
CrossRef
Google scholar
|
[140] |
Lima F H B, Castro J F R, Ticianelli E A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources, 2006, 161(2): 806–812
CrossRef
Google scholar
|
[141] |
Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun, 2006, 8(4): 588–594
CrossRef
Google scholar
|
[142] |
Li Y S, Zhao T S, Liang Z X. Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources, 2009, 187(2): 387–392
CrossRef
Google scholar
|
[143] |
Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K. Direct ethanol fuel cells using an anion exchange membrane. J Power Sources, 2008, 185(2): 621–626
CrossRef
Google scholar
|
[144] |
Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun, 2009, 11(5): 1077–1080
CrossRef
Google scholar
|
[145] |
Jiang L H, Sun G Q, Sun S G, Liu J G, Tang S H, Li H Q, Zhou B, Xin Q. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. ElectrochimActa, 2005, 50(27): 5384–5389
CrossRef
Google scholar
|
[146] |
Modestov A D, Tarasevich M R, Leykin A Y, Filimonov V Y. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources, 2009, 188(2): 502–506
CrossRef
Google scholar
|
[147] |
Li Y S, Zhao T S, Liang Z X. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources, 2009, 190(2): 223–229
CrossRef
Google scholar
|
[148] |
Miyazaki K, Abe T, Nishio K, Nakanishi H, Ogumi Z. Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane fuel cells. J Power Sources, 2010, 195(19): 6500–6503
CrossRef
Google scholar
|
[149] |
Li Y S, Zhao T S, Chen R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J Power Sources, 2011, 196(1): 133–139
CrossRef
Google scholar
|
/
〈 | 〉 |