Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

PDF(526 KB)
PDF(526 KB)
Front. Energy ›› 2010, Vol. 4 ›› Issue (4) : 443-458. DOI: 10.1007/s11708-010-0127-5
REVIEW ARTICLE
REVIEW ARTICLE

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

Author information +
History +

Abstract

Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm2 at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm2 at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

Keywords

fuel cell / direct ethanol fuel cells / anion-exchange membrane / ethanol oxidation reaction / oxygen reduction reaction / cell performance

Cite this article

Download citation ▾
T.S. Zhao, Y.S. Li, S.Y. Shen. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front Energ Power Eng Chin, 2010, 4(4): 443‒458 https://doi.org/10.1007/s11708-010-0127-5

References

[1]
Prakash S, Kohl P A J. Performance of carbon dioxide vent for direct methanol fuel cells. Power Sources, 2009, 192(2): 429–434
CrossRef Google scholar
[2]
Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal. B: Environ, 2006, 63(3,4): 187–193
[3]
Tu H C, Wang Y Y, Wan C C, Hsueh K L. Semi-empirical model to elucidate the effect of methanol crossover on direct methanol fuel cell. J Power Sources, 2006, 159(2): 1105–1114
CrossRef Google scholar
[4]
Schultz T, Krewer U, Vidakovic T, Pfafferodt M, Christov M, Sundmacher K. Systematic analysis of the direct methanol fuel cell. J. Appl Electrochem, 2007, 37(1): 111–119
CrossRef Google scholar
[5]
Scott K, Taama W M, Argyropoulos P, Sundmacher K. The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources, 1999, 83(1,2): 204–216
[6]
Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. ElectrochimiActa, 2009, 54(17): 4208–4215
[7]
Zhao H B, Yang J, Li L, Li H, Wang J L, Zhang Y M. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energy, 2009, 34 (9): 3908–3914
CrossRef Google scholar
[8]
Song Y J, Han S B, Lee J M, Park K W. PtRu alloy nanostructure electrodes for methanol electrooxidation. J Alloy Compd, 2009, 473(1,2): 516–520
[9]
Han J H, Liu H T. Real time measurements of methanol crossover in a DMFC. J Power Sources, 2007, 164(1): 166–173
CrossRef Google scholar
[10]
Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources, 1999, 84(1): 70–74
CrossRef Google scholar
[11]
Ren X, Springer T E, Gottesfeld S. Water and Methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc, 2000, 147(1): 92–98
CrossRef Google scholar
[12]
Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources, 2007, 170(1): 1–12
CrossRef Google scholar
[13]
Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem, 1999, 472(2): 120–125
CrossRef Google scholar
[14]
Pramanik H, Wragg A A, Basu S. Studies on operating parameters and cyclic voltammetry of a direct ethanol fuel cell. J Appl Electrochem, 2008, 38(9): 1321–1328
CrossRef Google scholar
[15]
Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources, 2004, 131(1,2): 217–223
[16]
Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leonditis V, Kontou S, Tsiakaras P. Pt-based catalysts for direct ethanol fuel cellsInt J Hydrogen Energy, 2005, 30(9) : 995–1001
CrossRef Google scholar
[17]
Colmenares L, Wang H, Yusys Z, Jiang L, Yan S, Sun G Q, Behm R J. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions. Electrochim Acta, 2006, 52(1): 221–233
CrossRef Google scholar
[18]
Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Léger J M, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta, 2004, 49(22,23): 3901–3908
[19]
Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev, 2009, 109(9): 4183–4206
CrossRef Google scholar
[20]
Antolini E, Gonzalez E R. Alkaline direct alcohol fuel cells, J Power Sources, 2010, 195(11): 3431–3450
CrossRef Google scholar
[21]
Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 2005, 5(2): 187–200
CrossRef Google scholar
[22]
Yu E H, Scott K, Reeve R W. electrochemical reduction of oxygen on carbon supported pt and pt/ru fuel cell electrodes in alkaline solutions. Fuel Cells, 2003, 3(4): 169–176
CrossRef Google scholar
[23]
Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium ethanol-oxidation electrocatalyst with alloyed goldInt J Hydrogen Energy, 2010, 35(13): 6490–6500
CrossRef Google scholar
[24]
Rao V, Hariyanto, Cremers C, Stimming U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry. Fuel Cells, 2007, 7(5): 417–423
CrossRef Google scholar
[25]
Varcoe J R, Kizewski J P, Halepoto D M, Poynton S D, Slade R C T, Zhao F. Anion-Exchange Membranes. Encyclopedia of Electrochemical Power Sources, Amsterdam, 2009, 329–343
[26]
Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun, 2003, 5(8): 662–666
CrossRef Google scholar
[27]
Yanagi H, Fukuta K. Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Trans, 2008, 16(2): 257–262
CrossRef Google scholar
[28]
Agel E, Bouet J, Fauvarque J F. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources, 2001, 101(2): 267–274
CrossRef Google scholar
[29]
Wan Y, Peppley B, Creber K A M, Bui V T, Halliop E. Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources, 2008, 185(1): 183–187
CrossRef Google scholar
[30]
Xu T W, Liu Z M, Li Y, Yang W H. Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). J Membr Sci, 2008, 320(1,2): 232–239
[31]
Pandey A K, Goswami A, Sen D, Mazumder S, Childs R F. Formation and characterization of highly crosslinked anion-exchange membranes. J Membr Sci, 2003, 217(1,2): 117–130
[32]
Slade R C T, Varcoe J R. Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2005, 176(5,6): 585–597
[33]
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J, Apperley D C. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater, 2007, 19(10): 2686–2693
CrossRef Google scholar
[34]
Varcoe J R, Slade R C T. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun, 2006, 8(5): 839–843
CrossRef Google scholar
[35]
Grew K N, Chu D, Chiu W K S. Ionic equilibrium and transport in the alkaline anion exchange membrane. J. Electrochem Soc, 2010, 157(8): B1024–B1032
CrossRef Google scholar
[36]
Wan Y, Peppley B, Creber K A M, Bui V T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells JPower Sources, 2010, 195(12): 3785–3793
CrossRef Google scholar
[37]
Lu S F, Pan J, Huang A B, Zhuang L, Lu J T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. PNAS, 2008, 105(52): 20611–20614
CrossRef Google scholar
[38]
Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 2009, 42(21): 8316–8321
CrossRef Google scholar
[39]
Wang G G, Weng Y M, Chu D, Xie D, Chen R R. Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J Membr Sci, 2009, 326(1): 4–8
CrossRef Google scholar
[40]
Xiong Y, Liu Q L, Zhang Q G, Zhu A M. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources, 2008, 183(2): 447–453
CrossRef Google scholar
[41]
Wang E D, Zhao T S, Yang W W. Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cellsInt J Hydrogen Energy, 2010, 35(5): 2183–2189
CrossRef Google scholar
[42]
Wu C M, Wu Y H, Luo J Y, Xu T W, Fu Y X. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. J Membr Sci, 2010, 356(1,2): 96–104
[43]
Yang C C, Chiu S J, Lee K T, Chien W C, Lin C T, Huang C A. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources, 2008,184(1): 44–51
CrossRef Google scholar
[44]
Lei L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci, 2005, 262(1,2): 1–4
[45]
Salmon E, Guinot S, Godet M, Fauvarque J F. Structural characterization of new poly(ethylene oxide)-based alkaline solid polymer electrolytes. J Appl Polym Sci, 1997, 65(3): 601–607
CrossRef Google scholar
[46]
Hou H Y, Sun G Q, He R H, Sun B Y, Jin W, Liu H, Xin Q. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cellInt J Hydrogen Energy, 2008, 33(23): 7172–7176
[47]
Xiong Y, Liu Q L, Zeng Q H. Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources, 2009, 193(2): 541–546
CrossRef Google scholar
[48]
Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochim Acta, 2007, 53(4): 1596–1603
CrossRef Google scholar
[49]
Wu L, Xu T W. Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr. Sci, 2008, 322(2): 286–292
CrossRef Google scholar
[50]
Varcoe J R, Beillard M, Halepoto D M, Kizewski J P, Poynton S D, Slade R C T. Membrane and Electrode Materials for Alkaline Membrane Fuel Cells. ECS Trans., 2008, 16(2): 1819–1834
CrossRef Google scholar
[51]
Park J S, Park S H, Yim S D, Yoon Y G, Lee W Y, Kim C S. Performance of solid alkaline fuel cells employing anion-exchange membranes JPower Sources, 2008, 178 (2) 620–626
CrossRef Google scholar
[52]
Fukuta K, Inoue H, Watanabe S, Yanagi H. In-situ Observation of CO2 through the Self-purging in Alkaline Membrane Fuel Cell (AMFC). ECS Trans,2009, 19(31): 23–27
CrossRef Google scholar
[53]
Adams L A, Poynton S D, Tamain C, Slade R C T, Varcoe J R. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem, 2008, 1(1,2): 79–81
[54]
Matsui Y, Saito M, Tasaka A, Inaba M. Influence of carbon dioxide on the performance of anion-exchange membrane fuel cells. ECS Trans., 2010, 25(13) 105–110
CrossRef Google scholar
[55]
Einsla B R, Chempath S, Pratt L R, Boncella J M, Rau J, Macomber C, Pivovar B S. Stability of cations for anion exchange membrane fuel cells. ECS Trans, 2007, 11(1): 1173–1180
CrossRef Google scholar
[56]
Xiong Y, Liu Q L, Zhu A M, Huang S M, Zeng Q H. Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources, 2009, 186(2): 328–333
CrossRef Google scholar
[57]
Wu Y H, Wu C M, Li Y, Xu T W, Fu Y X. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J Membr Sci, 2010, 350(1,2): 322–332
[58]
Yang C C, Chiu S J, Chien W C, Chiu S S. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources, 2010, 195(8): 2212–2219
CrossRef Google scholar
[59]
Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr. Sci, 2007, 288(1,2): 51–60
[60]
Wu Y H, Wu C M, Xu T W, Yu F, Fu Y X. Novel anion-exchange organic–inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells. J Membr Sci, 2008, 321(2): 299–308
CrossRef Google scholar
[61]
Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources, 2007, 173(1): 194–199
CrossRef Google scholar
[62]
Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun, 2000, 2(10): 697–702
CrossRef Google scholar
[63]
Fu J, Qiao J L, Lv H, Ma J X, Yuan X Z, Wang H J. Alkali doped poly (vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: Ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans, 2010, 25(13): 15–23
CrossRef Google scholar
[64]
Leykin A Y, Shkrebko O A, Tarasevich M R. Ethanol crossover through alkali-doped polybenzimidazole membrane. J Membr. Sci, 2009, 328(1,2): 86–89
[65]
Hou H Y, Sun G Q, He R H, Wu Z M, Sun B Y. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources, 2008, 182(1): 95–99
CrossRef Google scholar
[66]
Varcoe €J €R. €Investigations €of €the€ ex€ situ€ ionic€ conductivities€ at 30°C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys Chem Chem Phys, 2007, 9(12): 1479–1486
CrossRef Google scholar
[67]
Li Y S, Zhao T S, Yang W W. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energy, 2010, 35(11): 5656–5665
CrossRef Google scholar
[68]
Stoica D, Alloin F, Marais S, Langevin D, Chappey C, Judeinstein P. Polyepichlorydrine membrane for alkaline fuel cell: Sorption and conduction properties. J Phys Chem B, 2008, 112(39): 12338–12346
CrossRef Google scholar
[69]
Abuin G C, Nonjola P, Franceschini E A, Izraelevitch F H, Mathe M K, Corti H R. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cellsInt J Hydrogen Energy, 2010, 35(11): 5849–5854
CrossRef Google scholar
[70]
Zawodzinski T A, Springer T E, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc, 1993, 140(7): 1981–1985
CrossRef Google scholar
[71]
Choi P, Datta R. Sorption in proton-exchange membranes. J Electrochem Soc, 2003,150(12): E601–E607
CrossRef Google scholar
[72]
Colmati F, Antolini E, Gonzalez E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources, 2006, 157(1): 98–103
CrossRef Google scholar
[73]
Li H Q, Sun G Q, Cao L, Jiang L H, Xin Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta, 2007, 52(24): 6622–6629
CrossRef Google scholar
[74]
Shen Q M, Min Q H, Shi J J, Jiang L P, Zhang J R, Hou W H, Zhu J J. Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C, 2009, 113(4): 1267–1273
CrossRef Google scholar
[75]
Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochem Commun, 2009, 11(10): 1896–1899
CrossRef Google scholar
[76]
Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagège A, Audonet F, Remita H. Palladium nanowires synthesized in hexagonal mesophases: application in ethanol electrooxidation. Chem Mater, 2009, 21(8): 1612–1617
CrossRef Google scholar
[77]
Xu C W, Shen P K, Liu Y L. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources, 2007,164(2): 527–531
CrossRef Google scholar
[78]
Hu F P, Chen C L, Wang Z Y, Wei G Y. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta, 2006, 52(3): 1087–1091
CrossRef Google scholar
[79]
Chu D B, Wang J, Wang S X, Zha L G, He J G, Hou Y Y, Yan Y G, Lin H S, Tian Z W. High activity of Pd–In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun, 2009, 10(6): 955–958
CrossRef Google scholar
[80]
He Q G, Chen W, Mukerjee S, Chen S W, Laufek F. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources, 2009,187(2): 298–304
CrossRef Google scholar
[81]
Zhu L D, Zhao T S, Xu J B, Liang Z X. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources, 2009, 187(1): 80–84
CrossRef Google scholar
[82]
Ksar F, Ramos L, Keita B, Nadjo L, Beaunier P, Remita H. bimetallic palladium-gold nanostructures: application in ethanol oxidation. Chem Mater, 2009, 21(15): 3677–3683
CrossRef Google scholar
[83]
Liu Z L, Zhao B, Guo C L, Sun Y J, Xu F G, Yang H B, Li Z. Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surfaceJ Phys Chem C, 2009, 113(38): 16766–16711
CrossRef Google scholar
[84]
Nguyen S T, Law H M, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B, 2009, 91(1,2): 507–515
[85]
Wang Y, Nguyen T S, Liu X W, Wang X. Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources, 2010,195(9): 2619–2622
CrossRef Google scholar
[86]
Chen Y G, Zhuang L, Lu J T. Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chin. J Catal, 2007, 28(10): 870–874
CrossRef Google scholar
[87]
Jou L S, Chang J K, Twhang T J, Sun I W. Electrodeposition of palladium-copper€films€from€1-ethyl-3-methylimidazolium€chloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc, 2009,156(6): D193–D197
CrossRef Google scholar
[88]
Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon, 2009, 47(1): 271–278
CrossRef Google scholar
[89]
Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources, 2010, 195(4): 1001–1006
CrossRef Google scholar
[90]
Qiu C C, Shang R, Y F Xie, Bu Y R, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd–Ni thin films towards the oxidation of methanol and ethanol. Mater Chem Phys, 2010, 120(2,3): 323–330
[91]
Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti M L, Innocenti M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem, 2009, 2(1): 99–112
CrossRef Google scholar
[92]
Zheng H T, Li Y L, Chen S X, Shen P K. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources, 2006, 163(1): 371–375
CrossRef Google scholar
[93]
Xu C W, Chen L Q, Shen P K, Liu Y L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun, 2007, 9(5): 997–1001
CrossRef Google scholar
[94]
Yuan D S, Xu C W, Liu Y L, Tan S Z, Wang X, Wei Z D, Shen P K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. Electrochem Commun, 2007, 9(10): 2473–2478
CrossRef Google scholar
[95]
Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources, 2007,173(2): 877–881
CrossRef Google scholar
[96]
Hu F P, Cui G F, Wei Z D, Shen P K. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubesElectrochem Commun, 2008, 10(9): 1303–1306
CrossRef Google scholar
[97]
Wang Z Y, Hu F P, Shen P K. Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. ElectrochemCommun, 2006, 8(11): 1764–1768
CrossRef Google scholar
[98]
Hu F P, Ding F W, Song S Q, Shen P K. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources, 2006, 163(1): 415–419
CrossRef Google scholar
[99]
El-Shafei A A, Elhafeez A M, Mostafa H A. Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J Solid State Electrochem, 2010, 14(2): 185–190
CrossRef Google scholar
[100]
Pandey R K, Lakshminarayanan V. Enhanced electrocatalytic activity of Pd-Dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C, 2010, 114(18): 8507–8514
CrossRef Google scholar
[101]
Pandey R K, Lakshminarayanan V. Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J Phys Chem C, 2009, 113(52): 21596–21603
CrossRef Google scholar
[102]
Su L, Jia W Z, Schempf A, Ding Y, Lei Y. free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem C, 2009, 113(36): 16174–16180
CrossRef Google scholar
[103]
Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175(1–4) : 797–803
CrossRef Google scholar
[104]
Mann J, Yao N, Bocarsly A B. Characterization and analysis of new catalysts for a direct ethanol fuel cell. Langmuir, 2006, 22(25): 10432–10436
CrossRef Google scholar
[105]
Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta, 2009, 54(8): 2203–2208
CrossRef Google scholar
[106]
Cui G F, Song S Q, Shen P K, Kowal A, Bianchini C. First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C, 2009, 113(35): 15639–15642
CrossRef Google scholar
[107]
Fang X, Wang L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources, 2010, 195(5): 1375–1378
CrossRef Google scholar
[108]
Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta, 2010 (in press)
[109]
Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources, 2009, 190(2): 241–251
CrossRef Google scholar
[110]
Markovic N, Gasteiger H. Kinetics of oxygen reduction on Pt(Hkl) electrodes–Implications for the crystallite size effect with supported pt electrocatalysts. J Electrochem Soc, 1997, 144(5): 1591–1597
CrossRef Google scholar
[111]
Blizanac B B, Ross P N, Marković N M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: Rotating ring diskAg(hkl) studies. J Phys Chem B, 2006, 110(10): 4735–4741
CrossRef Google scholar
[112]
Blizanac B B, Ross P N, Marković N M. Oxygen electroreduction on Ag(1 1 1): The pH effect. Electrochim Acta, 2007, 52(6): 2264–2271
CrossRef Google scholar
[113]
Geniès L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta, 1998, 44(8,9): 1317–1327
[114]
Xu J B, Zhao T S, Li Y S, Yang W W. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy, 2010, 35(18): 9693–9700
CrossRef Google scholar
[115]
Xiong L F, Manthiram A. Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cellsJ Mater Chem, 2004, 14: 1454–1460
CrossRef Google scholar
[116]
Demarconnay L, Coutanceau C, Léger J M. Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta, 2008, 53(8): 3232–3241
CrossRef Google scholar
[117]
Gülzow E, Wagner N, Schulze M. preparation of gas diffusion electrodes with silver catalysts for alkaline fuel cells. Fuel Cells, 2003, 3(1,2): 67–72
[118]
Demarconnay L, Coutanceau C, Léger J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts- effect of the presence of methanol. Electrochim Acta, 2004, 49(25): 4513–4521
CrossRef Google scholar
[119]
Guo J S, Hsu A, Chu D, Chen R R. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C, 2010, 114(10): 4324–4330
CrossRef Google scholar
[120]
Mao L Q, Zhang D, Sotomura T, Nakatsu K. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta, 2003, 48(8): 1015–1021
CrossRef Google scholar
[121]
Calegaro M L, Lima F H B, Ticianelli E A. Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, J Power Sources, 2006,158(1): 735–739
CrossRef Google scholar
[122]
Fukuda M, Iida C, Nakayama M. One-step through-mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction. Mater Res Bull, 2009, 44(6): 1323–1327
CrossRef Google scholar
[123]
Hermann V, Dutriat D, Müller S, Comninellis C. Mechanistic Studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim. Acta, 2000, 46(2,3): 365–372
[124]
Nissinen T, Valo T, Gasik M, Rantanen J, Lampinen M. Microwave synthesis of catalyst spinel MnCo2O4 for alkaline fuel cell. J Power Sources, 2002, 106(1,2): 109–115
[125]
Chang Y M, Wu P W, Eu C Y, Hsieh Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources, 2009, 189(2): 1003–1007
CrossRef Google scholar
[126]
Restovic A, Ríos E, Barbato S, Ortiz J, Gautier J L. Oxygen reduction in alkaline medium at thin MnxCo3-xO4 (0≤x≤1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem, 2002, 522(2): 141–151
CrossRef Google scholar
[127]
Koninck M D, Poirier S C, Marsan B. Electrochemical characterization for the oxygen reduction reaction. J Electrochem Soc, 2007, 154(4): A381–A388
[128]
Ríos E, Abarca S, Daccarett P, Cong H N, Martel D, Marco J F, Gancedo J R, Gautier J L. Electrocatalysis of oxygen reduction on CuxMn3-xO4 (1.0<x<1.4) spinel particles/polypyrrol composite electrodes. Int J Hydrogen Energy, 2008, 33(19): 4945–4954
[129]
Gojković S L, Gupta S, Savinell R F. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction. J Electroanal Chem, 1999, 462 (1) : 63–72
CrossRef Google scholar
[130]
Mocchi C, Trasatti S. Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. J Mol Catal A, 2003, 204–205: 713–720
[131]
Tributsch H, Koslowski U I, Dorbandt I. Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. ElectrochimActa, 2008, 53(5): 2198–2209
CrossRef Google scholar
[132]
Lima F H B, Ticianelli E A. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. ElectrochimActa, 2004, 49(24): 4091–4099
CrossRef Google scholar
[133]
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C, 2007, 111(1): 404–410
CrossRef Google scholar
[134]
Coutanceau C, Demarconnay L, Lamy C, Léger J M. Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources, 2006, 156(1): 14–19
CrossRef Google scholar
[135]
Chatenet M, Bultel L G, Aurousseau M, Durand R, Andolfatto F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J Appl Electrochem, 2002, 32(10): 1131–1140
CrossRef Google scholar
[136]
Furuva N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim Acta, 2000, 45(25,26): 4251–4256
[137]
Wagner N, Schulze M, Gülzow E. Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources, 2004, 127(1,2): 264–272
[138]
Okajima K, Nabekura K, Kondoh T, Sudoh M. Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chloralkali membrane cell. J Electrochem Soc, 2005, 152(8): D117–D120
CrossRef Google scholar
[139]
Lee H K, Shim J P, Shim M J, Kim S W, Lee J S. Oxygen reduction behavior with silver alloy catalyst in alkaline media. Mater Chem Phys, 1996, 45(3): 238–242
CrossRef Google scholar
[140]
Lima F H B, Castro J F R, Ticianelli E A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources, 2006, 161(2): 806–812
CrossRef Google scholar
[141]
Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun, 2006, 8(4): 588–594
CrossRef Google scholar
[142]
Li Y S, Zhao T S, Liang Z X. Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources, 2009, 187(2): 387–392
CrossRef Google scholar
[143]
Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K. Direct ethanol fuel cells using an anion exchange membrane. J Power Sources, 2008, 185(2): 621–626
CrossRef Google scholar
[144]
Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun, 2009, 11(5): 1077–1080
CrossRef Google scholar
[145]
Jiang L H, Sun G Q, Sun S G, Liu J G, Tang S H, Li H Q, Zhou B, Xin Q. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. ElectrochimActa, 2005, 50(27): 5384–5389
CrossRef Google scholar
[146]
Modestov A D, Tarasevich M R, Leykin A Y, Filimonov V Y. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources, 2009, 188(2): 502–506
CrossRef Google scholar
[147]
Li Y S, Zhao T S, Liang Z X. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources, 2009, 190(2): 223–229
CrossRef Google scholar
[148]
Miyazaki K, Abe T, Nishio K, Nakanishi H, Ogumi Z. Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane fuel cells. J Power Sources, 2010, 195(19): 6500–6503
CrossRef Google scholar
[149]
Li Y S, Zhao T S, Chen R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J Power Sources, 2011, 196(1): 133–139
CrossRef Google scholar

Acknowledgements

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 623709).
T.S. Zhao is a Professor of Mechanical Engineering and the Director of Center for Sustainable Energy Technology at the Hong Kong University of Science & Technology (HKSUT). As an internationally renowned expert in energy technology, he presently focuses his research on fuel cells, multi-scale multiphase heat/mass transport with electrochemical reactions, and computational modeling. As of October 2010, he has published more than 150 papers in prestigious journals in the fields of energy science and engineering with SCI citations of more than 2850 times and H-index of 30. He has received a number of recognitions for his research and teaching, including the Bechtel Foundation Engineering Teaching Excellence Award at HKUST in 2004, the Overseas Distinguished Young Scholars Award by National Natural Science Foundation of China in 2006, Fellow of the American Society of Mechanical Engineers (ASME) in 2007, the Croucher Senior Fellowship award from the Croucher Foundation in 2008, and the Yangtze River Chair Professorship by the Chinese Ministry of Education in 2010. In the international community, Prof. Zhao serves as Editor-in-Chief of Advances in Fuel Cells, Series Editor, Energy & Environment (Royal Society of Chemistry), Asian Regional Editor of Applied Thermal Engineering, and as a member of the Editorial Board for more than 18 International Journals.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(526 KB)

Accesses

Citations

Detail

Sections
Recommended

/