RESEARCH ARTICLE

Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere

  • SUKARNI , 1 ,
  • SUDJITO 2 ,
  • Nurkholis HAMIDI 2 ,
  • Uun YANUHAR 3 ,
  • I.N.G. WARDANA 2
Expand
  • 1. Department of Mechanical Engineering, Faculty of Engineering, State University of Malang, Jl. Semarang 5, Malang 65145, East-Java, Indonesia
  • 2. Department of Mechanical Engineering, Faculty of Engineering, University of Brawijaya, Jl. Mayjen Haryono 167, Malang 65145, East-Java, Indonesia
  • 3. Biotechnology Laboratory, Department of Water Resources Management, Faculty of Fisheries and Marine Sciences, University of Brawijaya, Jl. Veteran, Malang 65145, East-Java, Indonesia

Received date: 12 Apr 2014

Accepted date: 19 May 2014

Published date: 29 May 2015

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.

Cite this article

SUKARNI , SUDJITO , Nurkholis HAMIDI , Uun YANUHAR , I.N.G. WARDANA . Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere[J]. Frontiers in Energy, 2015 , 9(2) : 125 -133 . DOI: 10.1007/s11708-015-0346-x

Acknowledgments

This work was supported by Directorate General of Higher Education, the Ministry of Education and Culture, Republic of Indonesia; the Fundamental Research Funds, in accordance with the Agreement on Implementation and Assignment Research Program Number 023.04.1.673453/2012, December 5, 2012, the second revision in May 1, 2013.
1
Khan S A, Rashmi , Hussain M Z, Prasad S, Banerjee U C. Prospects of biodiesel production from microalgae in India. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2361–2372

DOI

2
Tabatabaei M, Tohidfar M, Jouzani G S, Safarnejad M, Pazouki M. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1918–1927

DOI

3
De La Torre Ugarte D, Walsh M E, Shapouri, H, Slinsky, S P. The economic impacts of bioenergy crop production on US agriculture. Oak Ridge National Laboratory, 2000, 292(5519):41

4
Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 2002, 22(3): 245–279

DOI

5
Sawayama S, Minowa T, Yokoyama S. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17(1): 33–39

DOI

6
Ross A B, Biller P, Kubacki M L, Li H, Lea-Langton A, Jones J M. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234–2243

DOI

7
Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306

DOI

8
Metting F B Jr. Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology, 1996, 17(5-6): 477–489

DOI

9
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management, 2010, 51(12): 2738–2749

DOI

10
Mirón A S, García M C C, Gómez A C, Camacho F G, Grima E M, Chisti Y. Shear stress tolerance and biochemical characterization of phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 2003, 16(3): 287–297

DOI

11
Poncet J M, Véron B. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnology Letters, 2003, 25(23): 2017–2022

DOI

12
Chiu S Y, Kao C Y, Tsai M T, Ong S C, Chen C H, Lin C S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 2009, 100(2): 833–838

DOI

13
Suryanto H., Sukarni , Yanuhar U. Design Development of Effective Photobioreactor for Cultivation of Marine Microalgae as a Source of Renewable Energy (in Indonesian). The Research Report of National Strategic Grant, State University of Malang, Malang (2009)

14
Volkman J K, Brown M R, Dunstan G A, Jeffrey S. The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 1993, 29(1): 69–78

DOI

15
Lubián L M, Montero O, Moreno-Garrido I, Huertas I E, Sobrino C, González-del Valle M, Parés G. Nannochloropsis (eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3-5): 249–255

DOI

16
Lee M Y, Min B S, Chang C S, Jin E. Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Marine Biotechnology (New York, N.Y.), 2006, 8(3): 238–245

DOI

17
Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels R H. Development of in vivo sponge cultures: particle feeding by the tropical sponge pseudosuberites aff. andrewsi. Marine Biotechnology (New York, N.Y.), 2001, 3(6): 544–554

DOI

18
Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Marine Biotechnology (New York, N.Y.), 2009, 11(5): 585–595

DOI

19
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100–112

DOI

20
Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507

DOI

21
Sanchez A, González A, Maceiras R, Cancela Á, Urrejola S. Raceway pond design for microalgae culture for biodiesel. Chemical Engineering Transactions, 2011, 25: 845–850

DOI

22
Park J B K, Craggs R J, Shilton A N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 2011, 102(1): 35–42

DOI

23
Sierra E, Acién F G, Fernández J M, García J L, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 2008, 138(1–3): 136–147

DOI

24
Sato T, Yamada D, Hirabayashi S. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management, 2010, 51(6): 1196–1201

DOI

25
Hsieh C H, Wu W T. A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 2009, 46(3): 300–305

DOI

26
Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 2010, 101(17): 6768–6777

DOI

27
Das P, Obbard J P. Incremental energy supply for microalgae culture in a photobioreactor. Bioresource Technology, 2011, 102(3): 2973–2978

DOI

28
Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 2011, 102(3): 2724–2730

DOI

29
Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 2011, 33(7): 1269–1284

DOI

30
John R P, Anisha G S, Nampoothiri K M, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 2011, 102(1): 186–193

DOI

31
Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304–309

DOI

32
Harun R, Jason W S Y, Cherrington T, Danquah M K. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464–3467

DOI

33
Harun R, Danquah M K, Forde G M. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(2): 199–203

34
Mussgnug J H, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 2010, 150(1): 51– 56

DOI

35
Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Conversion and Management, 2010, 51(3): 606–611

DOI

36
Razon L F, Tan R R. Net energy analysis of the production of biodiesel and biogas from the microalgae: haematococcus pluvialis and nannochloropsis. Applied Energy, 2011, 88(10): 3507–3514

DOI

37
Collet P, Hélias A, Lardon L, Ras M, Goy R A, Steyer J P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, 102(1): 207–214

DOI

38
Sukarni, Sudjito, Hamidi N, Yanuhar U, Wardana I N G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. International Journal of Energy and Environmental Engineering, 2014, 5(4): 279–290

DOI

39
Beamish B B. Proximate analysis of New Zealand and Australian coals by thermogravimetry. New Zealand Journal of Geology and Geophysics, 1994, 37(4): 387–392

DOI

40
Mayoral M C, Izquierdo M T, Andres J M, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta, 2001, 370(1–2): 91–97

DOI

41
Nhuchhen D R, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63

DOI

42
Gašparovič L, Koreňová Z, Jelemenský Ľ. Kinetic study of wood chips decomposition by TGA. Chemical Papers, 2010, 64(2): 174–181

DOI

43
Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 2011, 105(1): 145–150

DOI

44
Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 2012, 97: 491–497

DOI

45
Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472(1–2): 55–63

DOI

46
Sonibare O O, Ehinola O A, Egashira R, KeanGiap L. An investigation into the thermal decomposition of Nigerian coal. Journal of Applied Sciences, 2005, 5(1): 104–107

DOI

47
Chen C, Ma X, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 2011, 88(9): 3189–3196

DOI

48
Tang Y, Ma X, Lai Z. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 2011, 102(2): 1879–1885

DOI

49
Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta, 2011, 526(1–2): 192–199

DOI

50
Wang Q, Zhao W, Liu H, Jia C, Xu H. Reactivity and kinetic analysis of biomass during combustion. Energy Procedia, 2012, 17: 869–875

DOI

51
Maloney D, Sampath R, Zondlo J. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating. Combustion and Flame, 1999, 116(1–2): 94–104

DOI

52
Kissinger H. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1956, 1957(29): 1702–1706

53
Jiang G, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498(1–2): 61–66

DOI

54
Hu S, Jess A, Xu M. Kinetic study of chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel, 2007, 86(17–18): 2778–2788

DOI

55
Ounas A, Aboulkas A, El Harfi K, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2011, 102(24): 11234–11238

DOI

Outlines

/