Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere
Received date: 12 Apr 2014
Accepted date: 19 May 2014
Published date: 29 May 2015
Copyright
The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.
SUKARNI , SUDJITO , Nurkholis HAMIDI , Uun YANUHAR , I.N.G. WARDANA . Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere[J]. Frontiers in Energy, 2015 , 9(2) : 125 -133 . DOI: 10.1007/s11708-015-0346-x
1 |
Khan S A, Rashmi
|
2 |
Tabatabaei M, Tohidfar M, Jouzani G S, Safarnejad M, Pazouki M. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1918–1927
|
3 |
De La Torre Ugarte D, Walsh M E, Shapouri, H, Slinsky, S P. The economic impacts of bioenergy crop production on US agriculture. Oak Ridge National Laboratory, 2000, 292(5519):41
|
4 |
Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 2002, 22(3): 245–279
|
5 |
Sawayama S, Minowa T, Yokoyama S. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17(1): 33–39
|
6 |
Ross A B, Biller P, Kubacki M L, Li H, Lea-Langton A, Jones J M. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234–2243
|
7 |
Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306
|
8 |
Metting F B Jr. Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology, 1996, 17(5-6): 477–489
|
9 |
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management, 2010, 51(12): 2738–2749
|
10 |
Mirón A S, García M C C, Gómez A C, Camacho F G, Grima E M, Chisti Y. Shear stress tolerance and biochemical characterization of phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 2003, 16(3): 287–297
|
11 |
Poncet J M, Véron B. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnology Letters, 2003, 25(23): 2017–2022
|
12 |
Chiu S Y, Kao C Y, Tsai M T, Ong S C, Chen C H, Lin C S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 2009, 100(2): 833–838
|
13 |
Suryanto H., Sukarni
|
14 |
Volkman J K, Brown M R, Dunstan G A, Jeffrey S. The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 1993, 29(1): 69–78
|
15 |
Lubián L M, Montero O, Moreno-Garrido I, Huertas I E, Sobrino C, González-del Valle M, Parés G. Nannochloropsis (eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3-5): 249–255
|
16 |
Lee M Y, Min B S, Chang C S, Jin E. Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Marine Biotechnology (New York, N.Y.), 2006, 8(3): 238–245
|
17 |
Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels R H. Development of in vivo sponge cultures: particle feeding by the tropical sponge pseudosuberites aff. andrewsi. Marine Biotechnology (New York, N.Y.), 2001, 3(6): 544–554
|
18 |
Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Marine Biotechnology (New York, N.Y.), 2009, 11(5): 585–595
|
19 |
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100–112
|
20 |
Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507
|
21 |
Sanchez A, González A, Maceiras R, Cancela Á, Urrejola S. Raceway pond design for microalgae culture for biodiesel. Chemical Engineering Transactions, 2011, 25: 845–850
|
22 |
Park J B K, Craggs R J, Shilton A N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 2011, 102(1): 35–42
|
23 |
Sierra E, Acién F G, Fernández J M, García J L, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 2008, 138(1–3): 136–147
|
24 |
Sato T, Yamada D, Hirabayashi S. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management, 2010, 51(6): 1196–1201
|
25 |
Hsieh C H, Wu W T. A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 2009, 46(3): 300–305
|
26 |
Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 2010, 101(17): 6768–6777
|
27 |
Das P, Obbard J P. Incremental energy supply for microalgae culture in a photobioreactor. Bioresource Technology, 2011, 102(3): 2973–2978
|
28 |
Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 2011, 102(3): 2724–2730
|
29 |
Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 2011, 33(7): 1269–1284
|
30 |
John R P, Anisha G S, Nampoothiri K M, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 2011, 102(1): 186–193
|
31 |
Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304–309
|
32 |
Harun R, Jason W S Y, Cherrington T, Danquah M K. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464–3467
|
33 |
Harun R, Danquah M K, Forde G M. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(2): 199–203
|
34 |
Mussgnug J H, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 2010, 150(1): 51– 56
|
35 |
Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Conversion and Management, 2010, 51(3): 606–611
|
36 |
Razon L F, Tan R R. Net energy analysis of the production of biodiesel and biogas from the microalgae: haematococcus pluvialis and nannochloropsis. Applied Energy, 2011, 88(10): 3507–3514
|
37 |
Collet P, Hélias A, Lardon L, Ras M, Goy R A, Steyer J P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, 102(1): 207–214
|
38 |
Sukarni, Sudjito, Hamidi N, Yanuhar U, Wardana I N G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. International Journal of Energy and Environmental Engineering, 2014, 5(4): 279–290
|
39 |
Beamish B B. Proximate analysis of New Zealand and Australian coals by thermogravimetry. New Zealand Journal of Geology and Geophysics, 1994, 37(4): 387–392
|
40 |
Mayoral M C, Izquierdo M T, Andres J M, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta, 2001, 370(1–2): 91–97
|
41 |
Nhuchhen D R, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63
|
42 |
Gašparovič L, Koreňová Z, Jelemenský Ľ. Kinetic study of wood chips decomposition by TGA. Chemical Papers, 2010, 64(2): 174–181
|
43 |
Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 2011, 105(1): 145–150
|
44 |
Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 2012, 97: 491–497
|
45 |
Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472(1–2): 55–63
|
46 |
Sonibare O O, Ehinola O A, Egashira R, KeanGiap L. An investigation into the thermal decomposition of Nigerian coal. Journal of Applied Sciences, 2005, 5(1): 104–107
|
47 |
Chen C, Ma X, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 2011, 88(9): 3189–3196
|
48 |
Tang Y, Ma X, Lai Z. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 2011, 102(2): 1879–1885
|
49 |
Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta, 2011, 526(1–2): 192–199
|
50 |
Wang Q, Zhao W, Liu H, Jia C, Xu H. Reactivity and kinetic analysis of biomass during combustion. Energy Procedia, 2012, 17: 869–875
|
51 |
Maloney D, Sampath R, Zondlo J. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating. Combustion and Flame, 1999, 116(1–2): 94–104
|
52 |
Kissinger H. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1956, 1957(29): 1702–1706
|
53 |
Jiang G, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498(1–2): 61–66
|
54 |
Hu S, Jess A, Xu M. Kinetic study of chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel, 2007, 86(17–18): 2778–2788
|
55 |
Ounas A, Aboulkas A, El Harfi K, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2011, 102(24): 11234–11238
|
/
〈 | 〉 |