Sulfur and carbon co-doped g-C3N4 microtubes with enhanced photocatalytic H2 production activity
Yang GE, Quanhao SHEN, Qi ZHANG, Naixu LI, Danchen LU, Zhaoming ZHANG, Zhiwei FU, Jiancheng ZHOU
Sulfur and carbon co-doped g-C3N4 microtubes with enhanced photocatalytic H2 production activity
Metal-free graphitic carbon nitride (g-C3N4) has captured significant attention as a low-cost and efficient hydrogen production photocatalyst through. Effectively regulating the microstructure and accelerating the separation of photogenerated carriers remain crucial strategies for promoting the photocatalytic performance of this material. Herein, a novel sulfur–carbon co-doped g-C3N4 (SCCN) hierarchical microtubules filled with abundant nanosheets inside by thermal polymerization is reported. Numerous nanosheets create abundant pores and cavities inside the SCCN microtubes, thereby increasing the specific surface area of g-C3N4 and providing sufficient reactant attachment sites. Besides, the hierarchical structure of SCCN microtubules strengthens the reflection and scattering of light, and the utilization of visible light is favorably affected. More importantly, co-doping S and C has greatly improved the photocatalytic performance of graphitic carbon nitride, optimized the band gap structure and enhanced the photogenerated carrier splitting. Consequently, the SCCN exhibits a remarkable photocatalytic H2 evolution rate of 4868 μmol/(g·h). This work demonstrates the potential of multi-nonmetal doped g-C3N4 as the ideal photocatalyst for H2 evolution.
carbon nitride / photocatalysis / hydrogen production
[1] |
Sun L J, Dong H L, Xu J.
CrossRef
Google scholar
|
[2] |
Jourshabani M, Asrami M, Lee B. Advanced functional carbon nitride by implanting semi-isolated VO2 active sites for photocatalytic H2 production and organic pollutant degradation. Small, 2023, 19(28): 2300147
CrossRef
Google scholar
|
[3] |
Du S W, Lin S Q, Ren K K.
CrossRef
Google scholar
|
[4] |
Wang X, Maeda K, Chen X.
CrossRef
Google scholar
|
[5] |
Xiao S T, Yin R, Wu L.
CrossRef
Google scholar
|
[6] |
Lin F, Zhou S, Wang G H.
CrossRef
Google scholar
|
[7] |
Zheng Y, Lin L H, Wang B.
CrossRef
Google scholar
|
[8] |
Wang X C, Chen X F, Thomas A.
CrossRef
Google scholar
|
[9] |
Liu Z X, Liu Y D, Sun X B.
CrossRef
Google scholar
|
[10] |
Liu Y J, Tayyab M, Pei W K.
CrossRef
Google scholar
|
[11] |
Shen R C, Hao L, Chen Q.
|
[12] |
Zhang J J, Wang L X, Mitra M.
|
[13] |
Jun Y S, Lee E Z, Wang X C.
CrossRef
Google scholar
|
[14] |
Sun J H, Zhang J S, Zhang M W.
CrossRef
Google scholar
|
[15] |
Cui L F, Song J L, McGuire A.
CrossRef
Google scholar
|
[16] |
Shen R C, He K L, Zhang A P.
CrossRef
Google scholar
|
[17] |
Huang H W, Xiao K, Tian N.
CrossRef
Google scholar
|
[18] |
Zhao Z W, Dai K, Zhang J F.
CrossRef
Google scholar
|
[19] |
Ou H H, Lin L H, Zheng Y.
CrossRef
Google scholar
|
[20] |
Zhang J S, Zhang M W, Yang C.
CrossRef
Google scholar
|
[21] |
Sun Z Z, Dong H Z, Yuan Q.
CrossRef
Google scholar
|
[22] |
Fu J W, Zhu B C, Jiang C J.
CrossRef
Google scholar
|
[23] |
Zhang Y, Mori T, Ye J.
CrossRef
Google scholar
|
[24] |
Dong G H, Zhao K, Zhang L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chemical Communications, 2012, 48(49): 6178–6180
CrossRef
Google scholar
|
[25] |
Wang H, Bian Y R, Hu J T.
CrossRef
Google scholar
|
[26] |
Chu Y C, Lin T J, Lin Y R.
CrossRef
Google scholar
|
[27] |
Samanta S, Yadav R, Kumar A.
CrossRef
Google scholar
|
[28] |
Huang J X, Li D G, Li R B.
CrossRef
Google scholar
|
[29] |
Zheng X S, Zhang Q X, Chen T S.
CrossRef
Google scholar
|
[30] |
Hu C C, Hung W Z, Wang M S.
CrossRef
Google scholar
|
[31] |
Ye M Y, Zhao Z H, Hu Z F.
CrossRef
Google scholar
|
[32] |
Wang Y G, Xia Q N, Bai X.
CrossRef
Google scholar
|
[33] |
Liang Z Z, Bai J X, Hao L.
CrossRef
Google scholar
|
[34] |
Da Silva E, Moura N, Coutinho A.
CrossRef
Google scholar
|
[35] |
Ho W K, Zhang Z Z, Lin W.
CrossRef
Google scholar
|
[36] |
Liu C, Wu K L, Meng G H.
CrossRef
Google scholar
|
[37] |
Zhu Y P, Ren T Z, Yuan Z Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Applied Materials & Interfaces, 2015, 7(30): 16850–16856
CrossRef
Google scholar
|
[38] |
Shi L, Chang K, Zhang H B.
CrossRef
Google scholar
|
[39] |
Li S, Dong G, Hailili R.
CrossRef
Google scholar
|
[40] |
WangKLi QLiuB S,
|
[41] |
Liu T, Li Y F, Sun H J.
|
[42] |
Ge F Y, Huang S Q, Yan J.
CrossRef
Google scholar
|
[43] |
Liu Y, Wang H, Yuan X Z.
CrossRef
Google scholar
|
[44] |
Lu X Y, Xie J, Chen X B.
CrossRef
Google scholar
|
[45] |
Wang Y B, Zhao X, Cao D.
CrossRef
Google scholar
|
[46] |
Xu H T, Xiao R, Huang J R.
CrossRef
Google scholar
|
[47] |
Zong X P, Miao X, Hua S X.
CrossRef
Google scholar
|
[48] |
Tian N, Huang H W, Wang S B.
CrossRef
Google scholar
|
[49] |
Guo Q Y, Zhang Y H, Zhang H S.
CrossRef
Google scholar
|
[50] |
Sahoo R C, Lu H J, Garg D.
CrossRef
Google scholar
|
[51] |
Zhang J G, Zhu Q H, Ma Y F.
CrossRef
Google scholar
|
[52] |
Wang H, Wu Y, Feng M B.
CrossRef
Google scholar
|
[53] |
Chen J Y, Qin C C, Mou Y.
CrossRef
Google scholar
|
/
〈 | 〉 |