Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution
Bin WANG, Bei AN, Xiaoqian LI, Shaohua SHEN
Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution
It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.
SrTiO3 nanocrystals / crystal facets / photocatalysis / hydrogen evolution
[1] |
Samanta B, Morales-GarcíaÁ, Illas F.
CrossRef
Google scholar
|
[2] |
Zhu Q, Xu Q, Du M.
CrossRef
Google scholar
|
[3] |
Feng C, Wu Z P, Huang K W.
CrossRef
Google scholar
|
[4] |
Tao X, Zhao Y, Wang S.
CrossRef
Google scholar
|
[5] |
Xue Z H, Luan D, Zhang H.
CrossRef
Google scholar
|
[6] |
Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399
CrossRef
Google scholar
|
[7] |
Wang Z, Hisatomi T, Li R.
CrossRef
Google scholar
|
[8] |
Ismael M. Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review. Journal of Alloys and Compounds, 2023, 931: 167469
CrossRef
Google scholar
|
[9] |
Zhang Y, Xu J, Zhou J.
CrossRef
Google scholar
|
[10] |
Zhou C, Wang T, Li D.
CrossRef
Google scholar
|
[11] |
Wang J, Wang J, Shi R.
CrossRef
Google scholar
|
[12] |
Guo L, Chen Y, Su J.
CrossRef
Google scholar
|
[13] |
Tang C, Cheng M, Lai C.
CrossRef
Google scholar
|
[14] |
Wang N, Cheng L, Liao Y.
CrossRef
Google scholar
|
[15] |
Tang Z R, Han B, Han C.
CrossRef
Google scholar
|
[16] |
Chen R, Chen J, Che H.
|
[17] |
Yuan L, Han C, Yang M Q.
CrossRef
Google scholar
|
[18] |
Li S H, Zhang N, Xie X.
CrossRef
Google scholar
|
[19] |
Moon H S, Hsiao K C, Wu M C.
CrossRef
Google scholar
|
[20] |
Zhang L, Zhang J, Yu H.
CrossRef
Google scholar
|
[21] |
Kosco J, Gonzalez-Carrero S, Howells C T.
CrossRef
Google scholar
|
[22] |
Shen R, Zhang L, Li N.
CrossRef
Google scholar
|
[23] |
Sun S, Gao R, Liu X.
CrossRef
Google scholar
|
[24] |
Cai H, Wang B, Xiong L.
CrossRef
Google scholar
|
[25] |
Zhang T, Meng F, Cheng Y.
CrossRef
Google scholar
|
[26] |
Liu D, Zhang J, Li C.
CrossRef
Google scholar
|
[27] |
Wei D, Tan Y, Wang Y.
CrossRef
Google scholar
|
[28] |
Hu J, Chen D, Mo Z.
CrossRef
Google scholar
|
[29] |
Faraji M, Yousefi M, Yousefzadeh S.
CrossRef
Google scholar
|
[30] |
Li J, Wu C, Li J.
CrossRef
Google scholar
|
[31] |
Li H, Sun B, Gao T.
CrossRef
Google scholar
|
[32] |
Yan T, Zhang X, Liu H.
|
[33] |
Yang J, Wu X, Mei Z.
CrossRef
Google scholar
|
[34] |
Mei Z, Wang G, Yan S, Wang J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2009097
CrossRef
Google scholar
|
[35] |
Wang P, Li H, Cao Y.
CrossRef
Google scholar
|
[36] |
Han B, Liu S, Zhang N.
CrossRef
Google scholar
|
[37] |
Yang M Q, Han C, Xu Y J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene–CdS–MoS2 composites. Journal of Physical Chemistry C, 2015, 119(49): 27234–27246
CrossRef
Google scholar
|
[38] |
Li Y H, Qi M Y, Li J Y.
CrossRef
Google scholar
|
[39] |
Lu K Q, Qi M Y, Tang Z R.
CrossRef
Google scholar
|
[40] |
Wang Z, Wang L, Cheng B.
CrossRef
Google scholar
|
[41] |
Adenle A, Zhou H, Tao X.
CrossRef
Google scholar
|
[42] |
Bai Y, Zhou Y, Zhang J.
CrossRef
Google scholar
|
[43] |
Scanlon D O, Dunnill C W, Buckeridge J.
CrossRef
Google scholar
|
[44] |
Liu M, Jing D, Zhou Z.
CrossRef
Google scholar
|
[45] |
Liu M, Wang L, (Max) Lu G.
CrossRef
Google scholar
|
[46] |
Naldoni A, Altomare M, Zoppellaro G.
CrossRef
Google scholar
|
[47] |
Wang B, Shen S, Mao S S. Black TiO2 for solar hydrogen conversion. Journal of Materiomics, 2017, 3(2): 96–111
CrossRef
Google scholar
|
[48] |
Chen X, Liu L, Yu P Y.
CrossRef
Google scholar
|
[49] |
Wang B, Shen S, Guo L. Surface reconstruction of facet-functionalized SrTiO3 nanocrystals for photocatalytic hydrogen evolution. ChemCatChem, 2016, 8(4): 798–804
CrossRef
Google scholar
|
[50] |
Takata T, Jiang J, Sakata Y.
CrossRef
Google scholar
|
[51] |
Ohno T, Sarukawa K, Matsumura M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002, 26(9): 1167–1170
CrossRef
Google scholar
|
[52] |
Tachikawa T, Yamashita S, Majima T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. Journal of the American Chemical Society, 2011, 133(18): 7197–7204
CrossRef
Google scholar
|
[53] |
Li R, Zhang F, Wang D.
CrossRef
Google scholar
|
[54] |
Li R, Han H, Zhang F.
CrossRef
Google scholar
|
[55] |
Zhu J, Fan F, Chen R.
CrossRef
Google scholar
|
[56] |
Li N, Liu M, Zhou Z.
CrossRef
Google scholar
|
[57] |
Wang B, Liu M, Zhou Z.
CrossRef
Google scholar
|
[58] |
Wang B, Shen S, Guo L. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166–167: 320–326
CrossRef
Google scholar
|
/
〈 | 〉 |