Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and costs using improved ABC algorithm

Homayoun EBRAHIMIAN, Bahman TAHERI, Nasser YOUSEFI

PDF(524 KB)
PDF(524 KB)
Front. Energy ›› 2015, Vol. 9 ›› Issue (4) : 426-432. DOI: 10.1007/s11708-015-0376-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and costs using improved ABC algorithm

Author information +
History +

Abstract

The aim of this paper is simultaneous minimization of hydrothermal units to reach the best solution by employing an improved artificial bee colony (ABC) algorithm in a multi-objective function consisting of economic dispatch (ED) considering the valve-point effect and pollution function in power systems in view of the hot water of the hydro system. In this type of optimization problem, all practical constraints of units were taken into account as much as possible in order to comply with the reality. These constraints include the maximum and minimum output power of units, the constraints caused by the balance between supply and demand, the impact of pollution, water balance, uneven production curve considering the valve-point effect and system losses. The proposed algorithm is applied on the studied system, and the obtained results indifferent operating conditions are analyzed. To investigate in various operating conditions, different load profiles in 12 h are taken into account. The obtained results are compared with those of the other methods including the genetic algorithm (GA), the Basu technique, and the improved genetic algorithm. Fast convergence is one of this improved algorithm features.

Keywords

practical constraints of units / pollution function / inlet steam valve / up-ramp rate of units / improved ABC algorithm

Cite this article

Download citation ▾
Homayoun EBRAHIMIAN, Bahman TAHERI, Nasser YOUSEFI. Optimal operation of energy at hydrothermal power plants by simultaneous minimization of pollution and costs using improved ABC algorithm. Front. Energy, 2015, 9(4): 426‒432 https://doi.org/10.1007/s11708-015-0376-4

References

[1]
Wu L H, Wang Y N, Yuan X F, Zhou S W. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electric Power Systems Research, 2010, 80(9): 1171–1181
CrossRef Google scholar
[2]
Lamont J W, Obessis E V. Emission dispatch models and algorithms for the 1990’s. IEEE Transactions on Power Systems, 1995, 10(2): 941–947
CrossRef Google scholar
[3]
Basu M. A simulated annealing-based goal attainment method for economic emission load is patch of fixed head hydrothermal power systems. International Journal of Electrical Power & Energy Systems, 2005, 27(2): 147–153
CrossRef Google scholar
[4]
Venkatesh P, Gnanadass R, Padhy N P. Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Transactions on Power Systems, 2003, 18(2): 688–697
CrossRef Google scholar
[5]
Huang C M, Yang H T, Huang C L. Bi-Objective power dispatch using fuzzy satisfaction-maximizing decision approach. IEEE Transactions on Power Systems, 1997, 12(4): 1715–1721
CrossRef Google scholar
[6]
Coello Coello C A. A comprehensive survey of evolutionary-based multi objective optimization techniques. Knowledge and Information Systems, 1999, 1(3): 269–308
CrossRef Google scholar
[7]
Muslu M. Economic dispatch with environmental considerations: tradeoff curves and emission reduction rates. International Journal of Electrical Power & Energy Systems, 2004, 71: 153–158
[8]
El-hawary M E, Landrigan J K. Optimum operation of fixed-head hydro-thermal electric power systems: Powell’s hybrid method versus Newton-Raphson method. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(3): 547–554
CrossRef Google scholar
[9]
Zaghlool M F, Trutt F C. Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Transactions on Power Systems, 1988, 3(1): 24–30
CrossRef Google scholar
[10]
Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Transactions on Power Systems, 2003, 18(4): 1529–1537
CrossRef Google scholar
[11]
Chiang C L. Optimal economic emission dispatch of hydrothermal power systems. International Journal of Electrical Power & Energy Systems, 2007, 29(6): 462–469
CrossRef Google scholar
[12]
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459–471
CrossRef Google scholar
[13]
Tarafdar hagh M, Ebrahimian H, Ghadimi N. Hybrid intelligent water drop bundled wavelet neural network to solve the islanding detection by inverter based DG. Frontiers in Energy, 2015, 9(1): 75–90

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(524 KB)

Accesses

Citations

Detail

Sections
Recommended

/