RESEARCH ARTICLE

Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments

  • Mengli Wang ,
  • Ruying Li ,
  • Qing Zhao
Expand
  • School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China

Received date: 29 Jan 2019

Revised date: 05 May 2019

Accepted date: 10 May 2019

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Highlights

Sludge digestion is critical to control the spread of ARGs from wastewater to soil.

Fate of ARGs in three pretreatment-AD processes was investigated.

UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process.

The total ARGs concentration showed significant correlation with 16S rRNA gene.

The bacteria carrying ARGs could be mainly affiliated with Proteobacteria.

Abstract

Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.

Cite this article

Mengli Wang , Ruying Li , Qing Zhao . Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments[J]. Frontiers of Environmental Science & Engineering, 2019 , 13(3) : 43 . DOI: 10.1007/s11783-019-1127-2

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21407113), the Tianjin City Science and Technology Support Program Project (No. 16YFZCSF00320) and the Key Projects of National Water Pollution Control and Management of China (No. 2015ZX07306001).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-019-1127-2 and is accessible for authorized users.
1
APHA (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington, DC: APHA

2
Berglund B (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology & Epidemiology, 5(1): 28564

DOI PMID

3
Bondarczuk K, Markowicz A, Piotrowska-Seget Z (2016). The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environment International, 87: 49–55

DOI PMID

4
Calero-Cáceres W, Melgarejo A, Colomer-Lluch M, Stoll C, Lucena F, Jofre J, Muniesa M (2014). Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology, 48(13): 7602–7611

DOI PMID

5
Diehl D L, LaPara T M (2010). Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environmental Science & Technology, 44(23): 9128–9133

DOI PMID

6
Henriques I S, Fonseca F, Alves A, Saavedra M J, Correia A (2006). Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. Research in Microbiology, 157(10): 938–947

DOI PMID

7
Houtmeyers S, Degrève J, Willems K, Dewil R, Appels L (2014). Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresource Technology, 171: 44–49

DOI PMID

8
Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T (2016). Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Research, 91: 1–10

DOI PMID

9
Jury K L, Vancov T, Stuetz R M, Khan S J (2010). Antibiotic resistance dissemination and sewage treatment plants. In: Méndez-Vilas A, ed. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Seville: Formatex Research Center, 509–519

10
Li H, Li C, Liu W, Zou S (2012). Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresource Technology, 123: 189–194

DOI PMID

11
Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1): 265–275

PMID

12
Ma Y, Wilson C A, Novak J T, Riffat R, Aynur S, Murthy S, Pruden A (2011). Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. Environmental Science & Technology, 45(18): 7855–7861

DOI PMID

13
Martinez J L (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11): 2893–2902

DOI PMID

14
Munir M, Wong K, Xagoraraki I (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2): 681–693

DOI PMID

15
Pei J, Yao H, Wang H, Ren J, Yu X (2016). Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes. Water Research, 99: 122–128

DOI PMID

16
Sun Y, Shen Y X, Liang P, Zhou J, Yang Y, Huang X (2016). Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresource Technology, 222: 100–106

DOI PMID

17
Tong J, Liu J, Zheng X, Zhang J, Ni X, Chen M, Wei Y (2016). Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. Bioresource Technology, 217: 37–43

DOI PMID

18
Tong J, Lu X, Zhang J, Sui Q, Wang R, Chen M, Wei Y (2017). Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments. Bioresource Technology, 235: 316–324

DOI PMID

19
Williams M C, Wenner J R, Rouzina I, Bloomfield V A (2001). Effect of pH on the overstretching transition of double-stranded DNA: Evidence of force-induced DNA melting. Biophysical Journal, 80(2): 874–881

DOI PMID

20
Wilson C A, Tanneru C T, Banjade S, Murthy S N, Novak J T (2011). Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions. Water Environment Research, 83(9): 815–825

DOI PMID

21
Wu Y, Cui E, Zuo Y, Cheng W, Rensing C, Chen H (2016). Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge. Bioresource Technology, 211: 414–421

DOI PMID

22
Zhang B, Ji M, Wang F, Li R, Zhang K, Yin X, Li Q (2017). Damage of EPS and cell structures and improvement of high-solid anaerobic digestion of sewage sludge by combined (Ca(OH)2+ multiple-transducer ultrasonic) pretreatment. RSC Advances, 7(37): 22706–22714

DOI

23
Zhang J, Chen M, Sui Q, Wang R, Tong J, Wei Y (2016a). Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 217: 28–36

DOI PMID

24
Zhang J, Lv C, Tong J, Liu J, Liu J, Yu D, Wang Y, Chen M, Wei Y (2016b). Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 200: 253–261

DOI PMID

25
Zhang T, Yang Y, Pruden A (2015). Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Applied Microbiology and Biotechnology, 99(18): 7771–7779

DOI PMID

26
Zhang T, Zhang M, Zhang X, Fang H H P (2009). Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environmental Science & Technology, 43(10): 3455–3460

DOI PMID

27
Zhao Q, Li R, Ji M, Ren Z J (2016). Organic content influences sediment microbial fuel cell performance and community structure. Bioresource Technology, 220: 549–556

DOI PMID

28
Zhen G, Lu X, Kato H, Zhao Y, Li Y Y (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable & Sustainable Energy Reviews, 69: 559–577

DOI

Outlines

/