Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water
Bingjie Xu, Gang Xue, Xing Yang
Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water
• An ibuprofen-degrading strain, Serratia marcescens BL1, was isolated and identified.
• The effects of various factors on ibuprofen degradation by BL1 were evaluated.
• Strain BL1 was applied to a laboratory-scale biological aerated filter system.
• Strain BL1 was stable in both static tests and in the biological aerated filter system.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30℃ and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
Ibuprofen / Biological aerated filter / Degrading bacterium / Serratia marcescens
[1] |
Abu Hasan H, Sheikh Abdullah S R, Al-Attabi A W N, Nash D A H, Anuar N, Abd. Rahman N, Sulistiyaning Titah H (2016). Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Separation and Purification Technology, 157(1 ): 215–221
CrossRef
Google scholar
|
[2] |
Ali I, Singh P, Aboul-Enein H Y, Sharma B (2009). Chiral analysis of ibuprofen residues in water and sediment. Analytical Letters, 42(12): 1747–1760
CrossRef
Google scholar
|
[3] |
Baghapour M A, Shirdarreh M R, Faramarzian M (2015). Amoxicillin removal from aqueous solutions using submerged biological aerated filter. Desalination and Water Treatment, 54(3): 790–801
CrossRef
Google scholar
|
[4] |
Chu H, Cao D, Dong B, Qiang Z (2010). Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Research, 44(5): 1573–1579
CrossRef
Pubmed
Google scholar
|
[5] |
Cycoń M, Żmijowska A, Wójcik M, Piotrowska-Seget Z (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. Journal of Environmental Management, 117(1 ): 7–16
CrossRef
Pubmed
Google scholar
|
[6] |
de Sousa D N, Mozeto A A, Carneiro R L, Fadini P S (2014). Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Science of the Total Environment, 484(1 ): 19–26
CrossRef
Pubmed
Google scholar
|
[7] |
Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012). Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Science of the Total Environment, 438(1 ): 404–413
CrossRef
Pubmed
Google scholar
|
[8] |
Gao P, Wei X, Gu C, Wu X, Xue G, Shi W, Sun W (2015). Isolation and characterization of an erythromycin-degrading strain and application for bioaugmentation in a biological aerated filter. Water, Air, & Soil Pollution, 226(6): 190
CrossRef
Google scholar
|
[9] |
Guo H, Yao J, Chen H, Wang J, Masakorala K, Jin Y, Richnow H H, Blake R E (2012). Substrate interactions during biodegradation of benzene/alkylbenzene mixtures by Rhodococcus sp. ustb-1. International Biodeterioration & Biodegradation, 75(1 ): 124–130
CrossRef
Google scholar
|
[10] |
Halling-Sørensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützhøft H C, Jørgensen S E (1998). Occurrence, fate and effects of pharmaceutical substances in the environment--a review. Chemosphere, 36(2): 357–393
CrossRef
Pubmed
Google scholar
|
[11] |
Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Choi K, Khim J S, Zhang X, Giesy J P (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology (Amsterdam, Netherlands), 98(3): 256–264
CrossRef
Pubmed
Google scholar
|
[12] |
He S, Wang J, Ye L, Zhang Y, Yu J (2014). Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiation Physics and Chemistry, 105(1 ): 104–108
CrossRef
Google scholar
|
[13] |
Hoseinzadeh E, Rezaee A, Hossini H (2016). Biological nitrogen removal in moving bed biofilm reactor using ibuprofen as carbon source. Water, Air, and Soil Pollution, 227(2): 46
CrossRef
Google scholar
|
[14] |
Li X, Wang Y, Yuan S, Li Z, Wang B, Huang J, Deng S, Yu G (2014). Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Research, 63(1 ): 81–93
CrossRef
Pubmed
Google scholar
|
[15] |
Li Y, Wu B, Zhu G, Liu Y, Ng W J, Appan A, Tan S K (2016). High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 562(1 ): 604–613
CrossRef
Pubmed
Google scholar
|
[16] |
Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H (2009). Co-metabolic degradation of dimethoate by Raoultella sp. X1. Biodegradation, 20(3): 363–373
CrossRef
Pubmed
Google scholar
|
[17] |
Lin Y, Li D, Zeng S, He M (2016). Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses. Frontiers of Environmental Science & Engineering, 10(3): 539–547
CrossRef
Google scholar
|
[18] |
Lindholm-Lehto P C, Ahkola H S J, Knuutinen J S, Herve S H (2016). Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland. Environmental Science and Pollution Research International, 23(8): 7985–7997
CrossRef
Pubmed
Google scholar
|
[19] |
Londoño Y A, Peñuela G A (2015). Biological removal of different concentrations of ibuprofen and methylparaben in a sequencing batch reactor (SBR). Water, Air, and Soil Pollution, 226(12): 393
CrossRef
Google scholar
|
[20] |
Marchlewicz A, Domaradzka D, Guzik U, Wojcieszyńska D (2016). Bacillus thuringiensis B1
CrossRef
Google scholar
|
[21] |
Marchlewicz A, Guzik U, Hupert-Kocurek K, Nowak A, Wilczyńska S, Wojcieszyńska D (2017). Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environmental Science and Pollution Research International, 24(8): 7572–7584
CrossRef
Pubmed
Google scholar
|
[22] |
Ministry of Environmental Protection of the People’s Republic of China (1989). Water quality-Determination of permanganate index. Available online at http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/199007/t19900701_67130.shtml (accessed July 19, 2018) (in Chinese)
|
[23] |
Ministry of Environmental Protection of the People’s Republic of China (2009). Water quality-Determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. Available online at http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201001/t20100112_184155.shtml (accessed July 19, 2018) (in Chinese)
|
[24] |
Murdoch R W, Hay A G (2013). Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology, 159(Pt_3): 621–632
CrossRef
Pubmed
Google scholar
|
[25] |
Paíga P, Santos L H M L M, Amorim C G, Araújo A N, Montenegro M C, Pena A, Delerue-Matos C (2013). Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environmental Science and Pollution Research International, 20(4): 2410–2420
CrossRef
Pubmed
Google scholar
|
[26] |
Pakshirajan K, Chugh D, Saravanan P (2008). Feasibility of m-cresol degradation using an indigenous mixed microbial culture with glucose as co-substrate. Clean Technologies and Environmental Policy, 10(3): 303–308
CrossRef
Google scholar
|
[27] |
Parolini M, Binelli A, Provini A (2011). Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicology and Environmental Safety, 74(6): 1586–1594
CrossRef
Pubmed
Google scholar
|
[28] |
Phan H V, Hai F I, Mcdonald J A, Khan S J, Zhang R, Price W E, Broeckmann A, Nghiem L D (2015). Nutrient and trace organic contaminant removal from wastewater of a resort town: comparison between a pilot and a full scale membrane bioreactor. International Biodeterioration & Biodegradation, 102(1 ): 40–48
CrossRef
Google scholar
|
[29] |
Pietrini F, Di Baccio D, Aceña J, Pérez S, Barceló D, Zacchini M (2015). Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium. Journal of Hazardous Materials, 300(1 ): 189–193
CrossRef
Pubmed
Google scholar
|
[30] |
Qim Y, Li D, Yang H (2007). Population diversity and community structure of bacteria on biofilms in a potable water pretreating bioreactor. Chinese Journal of Applied and Environmental Biology, 13(1): 104–107
|
[31] |
Shen P, Chen X (2007).Microbiology experiment. In: Shen P, Chen X, eds. Physiological and Biochemical Experiment for Microorganism Identification. 4th ed. Beijing: Higher Education Press, 111–127(in Chinese)
|
[32] |
Tran N H, Li J, Hu J, Ong S L (2014a). Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environmental Science and Pollution Research International, 21(6): 4727–4740
CrossRef
Pubmed
Google scholar
|
[33] |
Tran N H, Urase T, Ta T T (2014b). A preliminary study on the occurrence of pharmaceutically active compounds in hospital wastewater and surface water in Hanoi, Vietnam. Clean- Soil Air Water, 42(1): 267–275
|
[34] |
Trzcinski A P, Ganda L, Kunacheva C, Zhang D Q, Lin L L, Tao G, Lee Y, Ng W J (2016). Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters. Water Science &Technology, 74(7): 1716–1725
CrossRef
Pubmed
Google scholar
|
[35] |
Wang K, Li W, Gong X, Li X, Liu W, He C, Wang Z, Minh Q N, Chen C, Wang J (2014). Biological pretreatment of tannery wastewater using a full-scale hydrolysis acidification system. International Biodeterioration & Biodegradation, 95(Part A): 41–45
CrossRef
Google scholar
|
[36] |
Zhang Y, Lv T, Carvalho P N, Arias C A, Chen Z, Brix H (2016). Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research International, 23(3): 2890–2898
CrossRef
Pubmed
Google scholar
|
[37] |
Zhao W, Guo Y, Lu S, Yan P, Sui Q (2016). Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering, 10(6): 2
CrossRef
Google scholar
|
/
〈 | 〉 |