Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water

Bingjie Xu, Gang Xue, Xing Yang

PDF(597 KB)
PDF(597 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (5) : 15. DOI: 10.1007/s11783-018-1080-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water

Author information +
History +

Highlights

• An ibuprofen-degrading strain, Serratia marcescens BL1, was isolated and identified.

• The effects of various factors on ibuprofen degradation by BL1 were evaluated.

• Strain BL1 was applied to a laboratory-scale biological aerated filter system.

• Strain BL1 was stable in both static tests and in the biological aerated filter system.

Abstract

Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30℃ and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.

Graphical abstract

Keywords

Ibuprofen / Biological aerated filter / Degrading bacterium / Serratia marcescens

Cite this article

Download citation ▾
Bingjie Xu, Gang Xue, Xing Yang. Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water. Front. Environ. Sci. Eng., 2018, 12(5): 15 https://doi.org/10.1007/s11783-018-1080-5

References

[1]
Abu Hasan H, Sheikh Abdullah S R, Al-Attabi A W N, Nash D A H, Anuar N, Abd. Rahman N, Sulistiyaning Titah H (2016). Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Separation and Purification Technology, 157(1 ): 215–221
CrossRef Google scholar
[2]
Ali I, Singh P, Aboul-Enein H Y, Sharma B (2009). Chiral analysis of ibuprofen residues in water and sediment. Analytical Letters, 42(12): 1747–1760
CrossRef Google scholar
[3]
Baghapour M A, Shirdarreh M R, Faramarzian M (2015). Amoxicillin removal from aqueous solutions using submerged biological aerated filter. Desalination and Water Treatment, 54(3): 790–801
CrossRef Google scholar
[4]
Chu H, Cao D, Dong B, Qiang Z (2010). Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Research, 44(5): 1573–1579
CrossRef Pubmed Google scholar
[5]
Cycoń M, Żmijowska A, Wójcik M, Piotrowska-Seget Z (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. Journal of Environmental Management, 117(1 ): 7–16
CrossRef Pubmed Google scholar
[6]
de Sousa D N, Mozeto A A, Carneiro R L, Fadini P S (2014). Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Science of the Total Environment, 484(1 ): 19–26
CrossRef Pubmed Google scholar
[7]
Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012). Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Science of the Total Environment, 438(1 ): 404–413
CrossRef Pubmed Google scholar
[8]
Gao P, Wei X, Gu C, Wu X, Xue G, Shi W, Sun W (2015). Isolation and characterization of an erythromycin-degrading strain and application for bioaugmentation in a biological aerated filter. Water, Air, & Soil Pollution, 226(6): 190
CrossRef Google scholar
[9]
Guo H, Yao J, Chen H, Wang J, Masakorala K, Jin Y, Richnow H H, Blake R E (2012). Substrate interactions during biodegradation of benzene/alkylbenzene mixtures by Rhodococcus sp. ustb-1. International Biodeterioration & Biodegradation, 75(1 ): 124–130
CrossRef Google scholar
[10]
Halling-Sørensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützhøft H C, Jørgensen S E (1998). Occurrence, fate and effects of pharmaceutical substances in the environment--a review. Chemosphere, 36(2): 357–393
CrossRef Pubmed Google scholar
[11]
Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Choi K, Khim J S, Zhang X, Giesy J P (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology (Amsterdam, Netherlands), 98(3): 256–264
CrossRef Pubmed Google scholar
[12]
He S, Wang J, Ye L, Zhang Y, Yu J (2014). Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiation Physics and Chemistry, 105(1 ): 104–108
CrossRef Google scholar
[13]
Hoseinzadeh E, Rezaee A, Hossini H (2016). Biological nitrogen removal in moving bed biofilm reactor using ibuprofen as carbon source. Water, Air, and Soil Pollution, 227(2): 46
CrossRef Google scholar
[14]
Li X, Wang Y, Yuan S, Li Z, Wang B, Huang J, Deng S, Yu G (2014). Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Research, 63(1 ): 81–93
CrossRef Pubmed Google scholar
[15]
Li Y, Wu B, Zhu G, Liu Y, Ng W J, Appan A, Tan S K (2016). High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 562(1 ): 604–613
CrossRef Pubmed Google scholar
[16]
Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H (2009). Co-metabolic degradation of dimethoate by Raoultella sp. X1. Biodegradation, 20(3): 363–373
CrossRef Pubmed Google scholar
[17]
Lin Y, Li D, Zeng S, He M (2016). Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses. Frontiers of Environmental Science & Engineering, 10(3): 539–547
CrossRef Google scholar
[18]
Lindholm-Lehto P C, Ahkola H S J, Knuutinen J S, Herve S H (2016). Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland. Environmental Science and Pollution Research International, 23(8): 7985–7997
CrossRef Pubmed Google scholar
[19]
Londoño Y A, Peñuela G A (2015). Biological removal of different concentrations of ibuprofen and methylparaben in a sequencing batch reactor (SBR). Water, Air, and Soil Pollution, 226(12): 393
CrossRef Google scholar
[20]
Marchlewicz A, Domaradzka D, Guzik U, Wojcieszyńska D (2016). Bacillus thuringiensis B1(2015b) is a gram-positive bacteria able to degrade naproxen and ibuprofen. Water, Air & Soil Pollution, 227(6 ): 197
CrossRef Google scholar
[21]
Marchlewicz A, Guzik U, Hupert-Kocurek K, Nowak A, Wilczyńska S, Wojcieszyńska D (2017). Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environmental Science and Pollution Research International, 24(8): 7572–7584
CrossRef Pubmed Google scholar
[22]
Ministry of Environmental Protection of the People’s Republic of China (1989). Water quality-Determination of permanganate index. Available online at http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/199007/t19900701_67130.shtml (accessed July 19, 2018) (in Chinese)
[23]
Ministry of Environmental Protection of the People’s Republic of China (2009). Water quality-Determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. Available online at http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201001/t20100112_184155.shtml (accessed July 19, 2018) (in Chinese)
[24]
Murdoch R W, Hay A G (2013). Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology, 159(Pt_3): 621–632
CrossRef Pubmed Google scholar
[25]
Paíga P, Santos L H M L M, Amorim C G, Araújo A N, Montenegro M C, Pena A, Delerue-Matos C (2013). Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environmental Science and Pollution Research International, 20(4): 2410–2420
CrossRef Pubmed Google scholar
[26]
Pakshirajan K, Chugh D, Saravanan P (2008). Feasibility of m-cresol degradation using an indigenous mixed microbial culture with glucose as co-substrate. Clean Technologies and Environmental Policy, 10(3): 303–308
CrossRef Google scholar
[27]
Parolini M, Binelli A, Provini A (2011). Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicology and Environmental Safety, 74(6): 1586–1594
CrossRef Pubmed Google scholar
[28]
Phan H V, Hai F I, Mcdonald J A, Khan S J, Zhang R, Price W E, Broeckmann A, Nghiem L D (2015). Nutrient and trace organic contaminant removal from wastewater of a resort town: comparison between a pilot and a full scale membrane bioreactor. International Biodeterioration & Biodegradation, 102(1 ): 40–48
CrossRef Google scholar
[29]
Pietrini F, Di Baccio D, Aceña J, Pérez S, Barceló D, Zacchini M (2015). Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium. Journal of Hazardous Materials, 300(1 ): 189–193
CrossRef Pubmed Google scholar
[30]
Qim Y, Li D, Yang H (2007). Population diversity and community structure of bacteria on biofilms in a potable water pretreating bioreactor. Chinese Journal of Applied and Environmental Biology, 13(1): 104–107
[31]
Shen P, Chen X (2007).Microbiology experiment. In: Shen P, Chen X, eds. Physiological and Biochemical Experiment for Microorganism Identification. 4th ed. Beijing: Higher Education Press, 111–127(in Chinese)
[32]
Tran N H, Li J, Hu J, Ong S L (2014a). Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environmental Science and Pollution Research International, 21(6): 4727–4740
CrossRef Pubmed Google scholar
[33]
Tran N H, Urase T, Ta T T (2014b). A preliminary study on the occurrence of pharmaceutically active compounds in hospital wastewater and surface water in Hanoi, Vietnam. Clean- Soil Air Water, 42(1): 267–275
[34]
Trzcinski A P, Ganda L, Kunacheva C, Zhang D Q, Lin L L, Tao G, Lee Y, Ng W J (2016). Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters. Water Science &Technology, 74(7): 1716–1725
CrossRef Pubmed Google scholar
[35]
Wang K, Li W, Gong X, Li X, Liu W, He C, Wang Z, Minh Q N, Chen C, Wang J (2014). Biological pretreatment of tannery wastewater using a full-scale hydrolysis acidification system. International Biodeterioration & Biodegradation, 95(Part A): 41–45
CrossRef Google scholar
[36]
Zhang Y, Lv T, Carvalho P N, Arias C A, Chen Z, Brix H (2016). Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research International, 23(3): 2890–2898
CrossRef Pubmed Google scholar
[37]
Zhao W, Guo Y, Lu S, Yan P, Sui Q (2016). Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering, 10(6): 2
CrossRef Google scholar

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21767013 and 51741805) and the Natural Science Foundation of Jiangxi Province (No. 20151BAB213018).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer–Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(597 KB)

Accesses

Citations

Detail

Sections
Recommended

/