Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community

Guangqing Song , Hongbo Xi , Xiumei Sun , Yudong Song , Yuexi Zhou

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (5) : 10

PDF (450KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (5) : 10 DOI: 10.1007/s11783-018-1056-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community

Author information +
History +
PDF (450KB)

Abstract

The inhibition ratio sharply increased with the increasing COD.

The absorbance of UV-vis at 420 nm showed a linear correlation with the SMA.

The molecular structure of EPS has changed when COD was 9585 mg/L.

Illumina Miseq sequencing was employed to reveal the microbial composition.

The synthesis of 2-butenal, which is a vital raw material for the production of sorbic acid as a food preservative, generates some toxic by-products, so it is urgent to seek better detoxification strategies for the treatment of 2-butenal manufacture wastewater. In this study, batch experiments were carried out to investigate the inhibition effect of wastewater on the methanogenic activity. To understand the wastewater toxicity to anaerobic granular sludge, variations of the specific methanogenic activity (SMA) and extracellular polymeric substance (EPS) constituents at various wastewater CODs were investigated. Ultraviolet-visible (UV-vis) spectra and Fourier transform infrared (FT-IR) spectra were employed to analyze the structure of the EPS. The results showed that the inhibitory ratio of 2-butenal manufacture wastewater was less than 8.4% on the anaerobic granular sludge when the CODs were less than 959 mg/L. However, the inhibitory ratio increased from 36.4% to 93.6% when CODs increased from 2396 mg/L to 9585 mg/L, with the SMA decreasing from 39.1 mL CH4/(gVSS·d) to 3.2 mL CH4/(gVSS·d). The diversity of the microbial community under various CODs was researched by Illumina 16S rRNA Miseq sequencing and the results demonstrated that ProteiniphilumPetrimonas and Syntrophobacter were the dominant bacteria genera in all sample. Regarding archaea, Methanobacterium was the most dominated archaea genera, followed by the Methanosaeta group in all samples. Moreover, the bacterial communities had changed obviously with increasing CODs, which indicated high CODs played a negative impact on the richness and diversity of bacterial community in the sludge samples.

Graphical abstract

Keywords

2-butenal manufacture wastewater / Methanogenic activity / Specific methanogenic activity (SMA) / Extracellular polymeric substance (EPS) / Microbial community

Cite this article

Download citation ▾
Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community. Front. Environ. Sci. Eng., 2018, 12(5): 10 DOI:10.1007/s11783-018-1056-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aquino S F, Stuckey D C (2004). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Research, 38(2): 255–266

[2]

Castello E, Santos C G Y, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C (2009). Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance. International Journal of Hydrogen Energy, 34(14): 5674–5682

[3]

Chen S Y, Dong X Z (2005). Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 6): 2257–2261

[4]

Cheng J Y, Kanjo Y, Suidan M T, Venosa A D (1996). Anaerobic biotransformation of 2,4-dinitrotoluene with ethanol as primary substrate: Mutual effect of the substrates on their biotransformation. Water Research, 30(2): 307–314

[5]

Díaz E, Amils R, Sanz J L (2003). Molecular ecology of anaerobic granular sludge grown at different conditions. Water Science and Technology, 48(6): 57–64

[6]

Dong F, Zhao Q B, Zhao J B, Sheng G P, Tang Y, Tong Z H, Yu H Q, Li Y Y, Harada H (2010). Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresource Technology, 101(6): 1722–1726

[7]

DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350–356

[8]

Foladori P, Bruni L, Tamburini S (2014). Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria. Journal of Hazardous Materials, 280: 758–766

[9]

Grabowski A, Tindall B J, Bardin V, Blanchet D, Jeanthon C (2005). Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 3): 1113–1121

[10]

Gu A Z, Hedlund B P, Staley J T, Strand S E, Stensel H D (2004). Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE. Environmental Microbiology, 6(1): 45–54

[11]

Ioannou L A, Li Puma G, Fatta-Kassinos D (2015). Treatment of winery wastewater by physicochemical, biological and advanced processes: A review. Journal of Hazardous Materials, 286: 343–368

[12]

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner F O (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1): e1

[13]

Krakat N, Schmidt S, Scherer P (2011). Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresource Technology, 102(10): 5692–5701

[14]

Li Y F, Shi J, Nelson M C, Chen P H, Graf J, Li Y B, Yu Z T (2016). Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresource Technology, 200: 744–752

[15]

Lin R C, Cheng J, Ding L K, Song W L, Zhou J H, Cen K F (2015). Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation. Bioresource Technology, 197: 323–328

[16]

Liu C, Li H, Zhang Y Y, Si D D, Chen Q W (2016). Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresource Technology, 216: 87–94

[17]

Mizuno K, Morishita Y, Ando A, Tsuchiya N, Hirata M, Tanaka K (2012). Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors. World Journal of Microbiology & Biotechnology, 28(2): 677–686

[18]

Morgan J W, Forster C F, Evison L (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research, 24(6): 743–750

[19]

Ohtsuki T, Sato K, Sugimoto N, Akiyama H, Kawamura Y (2012). Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy. Analytica Chimica Acta, 734: 54–61

[20]

Oliveira S V W B, Moraes E M, Adorno M A T, Varesche M B A, Foresti E, Zaiat M (2004). Formaldehyde degradation in an anaerobic packed-bed bioreactor. Water Research, 38(7): 1685–1694

[21]

Owen W F, Stuckey D C, Healy Jr J B, Young L Y, McCarty P L (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13(6): 485–492

[22]

Pereira N S, Zaiat M (2009). Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR). Journal of Hazardous Materials, 163(2-3): 777–782

[23]

Shakoori A R, Makhdoom M, Haq R U (2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 53(3): 348–351

[24]

Tran T, Bolto B, Gray S, Hoang M, Ostarcevic E (2007). An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Research, 41(17): 3915–3923

[25]

Venkiteshwaran K, Milferstedt K, Hamelin J, Fujimoto M, Johnson M, Zitomer D H (2017). Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Research, 110: 161–169

[26]

Wang Y, Wang Q H, Li M, Yang Y N, He W, Yan G X, Guo S H (2016). An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochemical Engineering Journal, 105: 44–51

[27]

Wang Z C, Gao M C, Wang S, Xin Y J, Ma D, She Z L, Wang Z, Chang Q B, Ren Y (2014). Effect of hexavalent chromium on extracellular polymeric substances of granular sludge from an aerobic granular sequencing batch reactor. Chemical Engineering Journal, 251: 165–174

[28]

Wang Z W, Wu Z C, Tang S J (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43(9): 2504–2512

[29]

Wei D, Li M T, Wang X D, Han F, Li L S, Guo J, Ai L J, Fang L L, Liu L, Du B, Wei Q (2016). Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge. Journal of Hazardous Materials, 301: 407–415

[30]

Xie S B, Wu Y Q, Wang W T, Wang J S, Luo Z P, Li S Y (2014). Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge. Radiation Physics and Chemistry, 97: 349–353

[31]

Zhang D Q, Tan S K, Gersberg R M (2010). Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management, 91(8): 1623–1633

[32]

Zhang X W, Yue Q Y, Yue D T, Gao B Y, Wang X J (2015). Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis. Frontiers of Environmental Science & Engineering, 9(3): 402–410

[33]

Zhao X G, Jiang G W, Li A, Li Y (2016). Technology, cost, a performance of waste-to-energy incineration industry in China. Renewable & Sustainable Energy Reviews, 55: 115–130

[34]

Zhu L, Qi H Y, Lv M L, Kong Y, Yu Y W, Xu X Y (2012). Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresource Technology, 124: 455–459

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (450KB)

Supplementary files

FSE-18024-OF-SGQ_suppl_1

3410

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/